scholarly journals BAVP: Blockchain-Based Access Verification Protocol in LEO Constellation Using IBE Keys

2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Songjie Wei ◽  
Shuai Li ◽  
Peilong Liu ◽  
Meilin Liu

LEO constellation has received intensive research attention in the field of satellite communication. The existing centralized authentication protocols traditionally used for MEO/GEO satellite networks cannot accommodate LEO satellites with frequent user connection switching. This paper proposes a fast and efficient access verification protocol named BAVP by combining identity-based encryption and blockchain technology. Two different key management schemes with IBE and blockchain, respectively, are investigated, which further enhance the authentication reliability and efficiency in LEO constellation. Experiments on OPNET simulation platform evaluate and demonstrate the effectiveness, reliability, and fast-switching efficiency of the proposed protocol. For LEO networks, BAVP surpasses the well-known existing solutions with significant advantages in both performance and scalability which are supported by theoretical analysis and simulation results.

Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 355 ◽  
Author(s):  
Byounghak Kim ◽  
Heejung Yu ◽  
Song Noh

The concept of Internet of Things (IoT) has attracted much research attention for the realization of a smart society. However, the radio transmission coverage of the existing IoT solutions is not enough to connect lots of devices deployed over wide areas. Therefore, satellite networks have been considered as one of the most attractive solutions to wide cell coverage of IoT, i.e., global-scaled IoT. In satellite communication, a digital channelizer is one of the most significant parts that support multiple transponders. Owing to their wide coverage, satellite communication systems are more vulnerable to interference than other types of wireless communication systems. In this study, a cognitive interference cancellation using the inherent properties of a digital channelizer is considered. The proposed method detects a subchannel corrupted by interference and omits it. A simple energy detection method and a modified version are proposed for detection of interference. In the modified (i.e., improved) method, the number of required signal blocks to achieve the target detection performance can be reduced, i.e., the detection performance is improved with the same number of blocks, by exploiting the property of the fast Fourier transform (FFT) algorithm. Detection performance such as false alarm and detection probabilities are analyzed, and the validity of the analysis is verified with numerical results. It is also shown that an interference lower than a certain level in the proposed approach does not need to be cancelled.


2004 ◽  
Vol 26 (5) ◽  
pp. 423-433 ◽  
Author(s):  
Iuon-Chang Lin ◽  
Hsia-Hung Ou ◽  
Min-Shiang Hwang

Author(s):  
Yugashree Bhadane ◽  
Pooja Kadam

Now days, wireless technology is one of the center of attention for users and researchers. Wireless network is a network having large number of sensor nodes and hence called as “Wireless Sensor Network (WSN)”. WSN monitors and senses the environment of targeted area. The sensor nodes in WSN transmit data to the base station depending on the application. These sensor nodes communicate with each other and routing is selected on the basis of routing protocols which are application specific. Based on network structure, routing protocols in WSN can be divided into two categories: flat routing, hierarchical or cluster based routing, location based routing. Out of these, hierarchical or cluster based routing is becoming an active branch of routing technology in WSN. To allow base station to receive unaltered or original data, routing protocol should be energy-efficient and secure. To fulfill this, Hierarchical or Cluster base routing protocol for WSN is the most energy-efficient among other routing protocols. Hence, in this paper, we present a survey on different hierarchical clustered routing techniques for WSN. We also present the key management schemes to provide security in WSN. Further we study and compare secure hierarchical routing protocols based on various criteria.


2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
S. Raja Rajeswari ◽  
V. Seenivasagam

Wireless sensor networks (WSNs) consist of lightweight devices with low cost, low power, and short-ranged wireless communication. The sensors can communicate with each other to form a network. In WSNs, broadcast transmission is widely used along with the maximum usage of wireless networks and their applications. Hence, it has become crucial to authenticate broadcast messages. Key management is also an active research topic in WSNs. Several key management schemes have been introduced, and their benefits are not recognized in a specific WSN application. Security services are vital for ensuring the integrity, authenticity, and confidentiality of the critical information. Therefore, the authentication mechanisms are required to support these security services and to be resilient to distinct attacks. Various authentication protocols such as key management protocols, lightweight authentication protocols, and broadcast authentication protocols are compared and analyzed for all secure transmission applications. The major goal of this survey is to compare and find out the appropriate protocol for further research. Moreover, the comparisons between various authentication techniques are also illustrated.


Sign in / Sign up

Export Citation Format

Share Document