scholarly journals Frequency Domain Design of a Series Structure of Robust Controllers for Multi-Input Single-Output Systems

2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Montserrat Gil-Martínez ◽  
Javier Rico-Azagra ◽  
Jorge Elso

The regulation of a disturbed output can be improved when several manipulated inputs are available. A popular choice in these cases is the series control scheme, characterized by (1) a sequential intervention of loops and (2) faster loops being reset by slower loops, to keep their control action around convenient values. This paper tackles the problem from the frequency-domain perspective. First, the working frequencies for each loop are determined and closed-loop specifications are defined. Then, Quantitative Feedback Theory (QFT) bounds are computed for each loop, and a sequential loop-shaping of controllers takes place. The obtained controllers are placed in a new series architecture, which unlike the classical series architecture only requires one controller with integral action. The benefits of the method are greater as the number of control inputs grow. A continuous stirred tank reactor (CSTR) is presented as an application example.

Author(s):  
Harsh Goud ◽  
Pankaj Swarnkar

AbstractModelling and controlling of Continuous stirred tank reactor (CSTR) is one of the major problems in the process industry. The nonlinear characteristic of CSTR may change the variation of temperature in either direction from the given set value. Chemical reactions within the CSTR depends on the given reference temperature. Such variation from reference values may result in degrading the variety of biomass. Design and implementation of the precise control device in such system are difficult for researchers. This paper proposes the MIT based control scheme as a solution to control problem of CSTR. An improvement of signal synthesis MIT system has been proposed in this study to enhance the steady-state and transient performance of CSTR. Artificial Bee Colony (ABC) based controller parameter tuning technique is applied to get the optimal performance of the controller. This paper shows the design and implementation of conventional PID tuned with the Z-N method, adaptive PID tune with ABC, MIT and ABC-MIT for CSTR. Detailed comparison based on simulation studies is presented which shows that ABC-MIT based control scheme improves the transient and steady state response.


Sign in / Sign up

Export Citation Format

Share Document