scholarly journals Application of Distributed Optical Fiber Sensing Technology in Surrounding Rock Deformation Control of TBM-Excavated Coal Mine Roadway

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Bin Tang ◽  
Hua Cheng

After roadway excavation, the deformation and failure of roadway surrounding rocks typically results in roadway damage or collapse. Conventional monitoring techniques, such as extensometers, stress meters, and convergence stations, are only capable to detect the stress or strain data with the shallow layers of surrounding rocks, and they require arduous manual works. Moreover, in the abovementioned monitoring techniques, the monitoring instruments are installed behind the excavation face; therefore, the strain and deformation occurring in front of excavation face cannot be detected. In order to eliminate these shortcomings, an innovative monitoring system for surrounding rock deformation control has been developed base on Brillouin optical time domain reflectometry. Compared with conventional monitoring systems, the proposed system provides a reliable, accurate, and real-time monitoring measure for roadway surrounding rock deformation control over wide extension. The optical fiber sensors are installed in boreholes which are situated ahead of the excavation face; therefore, the sensors can be protected well and the surrounding rock deformation behaviors can be studied. The proposed system has been applied within a TBM-excavated roadway in Zhangji coal mine, China. The surrounding rock deformation behaviors have been detected accurately, and the monitoring results provided essential references for surrounding rock deformation control works.

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Ming Su ◽  
Xiaohui Gao

To effectively control the large surrounding rock deformation of the mining roadway under multiple excavations and mining in Wangcun coal mine, the field investigation, numerical simulation, field test, and monitoring were conducted, and the characteristics of stress and deformation evolution of the surrounding rock under the influence of multiple excavations and mining were analyzed; then the collaborative supporting technology of high prestressed bolt and short anchor cables was proposed in this study. The results show the following: (1) under the influence of multiple excavations and mining, the peak vertical stress of the typical air-return roadway reaches 23 MPa, and the deformation increases by about 2.8 times after the mining of adjacent panel. (2) The principle of the roadway support under the influence of multiple excavations and mining in Wangcun coal mine is determined; from the perspective of prestress, we can conclude that the active support of short anchor cables is better than that of long anchor cables. (3) Based on the results of the field monitoring, the bolt stress can be divided into four stages: the loss stage of prestress, the sudden-decrease stage of the roof periodic weighting, the decrease stage of advanced support, and the rapid-increase stage of strong disturbance. Due to the large anchorage range of anchor cables, there is no decrease stage of advanced support. After the application of prestress, the bolt stress of side bolts and top bolts decreases, and the reduction amplitude is up to 30 kN. (4) As the panel advances, the deformation of the surrounding roadway increases, and the growth rate is also increasing gradually. However, the final displacement of the roof, floor, and two sides is within 18 mm. The bolt and anchor cables are not broken, and the control effect is good. The research results have a certain reference value for similar roadway control.


2018 ◽  
Vol 15 (5) ◽  
pp. 1917-1928 ◽  
Author(s):  
Wei Zhang ◽  
Ziming He ◽  
Dongsheng Zhang ◽  
Dahong Qi ◽  
Weisheng Zhang

2019 ◽  
Vol 6 (4) ◽  
pp. 536-546 ◽  
Author(s):  
Bonan Wang ◽  
Faning Dang ◽  
Wei Chao ◽  
Yanping Miao ◽  
Jun Li ◽  
...  

Abstract Two case studies were conducted in the Shennan mining area of Shaanxi Province, China to evaluate the surrounding rock deformation and stress evolution in pre-driven longwall recovery rooms. These studies mainly monitored the surrounding rock deformation and coal pillar stress in the recovery rooms of the N1206 panel of 2−2 coal seam at Ningtiaota Coal Mine and the 15205 panel of 5−2 coal seam at Hongliulin Coal Mine. The monitoring results showed that the surrounding rock deformation of the main recovery room and the coal pillar stress in the N1206 and 15205 panels began to increase significantly when the face was 36 m and 42 m away from the terminal line, respectively. After the face entered the main recovery room, the maximum roof-to-floor convergence in the N1206 and 15205 panels was 348.03 mm and 771.24 mm, respectively, and the coal pillar stresses increased more than 5 MPa and 7 MPa, respectively. In addition, analysis of the periodic weighting data showed that the main roof break position of the N1206 and 15205 panels after the longwall face entered the main recovery room was − 3.8 m and − 8.2 m, respectively. This research shows that when the main roof breaks above the coal pillar, the surrounding rock deformation of the main recovery room and the coal pillar stress increase sharply. The last weighting is the key factor affecting the stability of the main recovery room and the coal pillar; main roof breaks at disadvantageous positions are the main cause of the support crushing accidents.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xinggang Xu ◽  
Hao Feng ◽  
Lishuai Jiang ◽  
Tao Guo ◽  
Xingyu Wu ◽  
...  

In order to explore the deformation and failure evolution characteristics of the surrounding rock during the connection process of the deep rock burst drivage roadway under the dynamic load disturbance, and based on this, the catastrophe mechanism of the roadway is analyzed, taking the rock burst accident of Longyun Coal Industry in Shandong Province on October 20, 2018, as the engineering background. FLAC3D was used to study the distribution evolution law of displacement, plastic zone, and stress field in the whole process of “Roadway Drivage-Deformation and Failure-Instability and Disaster” in the surrounding rock of deep roadway. The research results show that under the conditions of high stress and dynamic load disturbance, the surrounding rock deformation and failure are significant during the connection of the thick-top-coal roadway in deep, the roof is the most, the two ribs are the second, and the roadway top-coal is in an “inverted trapezoid” sag pattern. When the length of the bolts is limited or the anchoring force of the cables is not enough to effectively restrain the roof, the impact of dynamic disturbance on the plastic damage of the roof is greater than that of the two ribs and the floor, and the plastic damage of the coal seam roof affecting the surrounding rock deformation of the roadway drivage played a leading role.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Chaolin Liu ◽  
Guohua Zhang

In order to effectively solve a series of problems such as the difficulty of coal and rock interbed roadway support in Gaojiazhuang Coal Mine and get a scientific and reasonable optimization scheme of surrounding rock support, theoretical analysis, numerical simulation, ultrasonic detection, field-effect test, and other means are adopted to analyze the instability of coal and rock interbed roadway. The results show that the interbedded roadway has weak interbedded cementation, and its ore pressure is more intense due to the influence of its interbedded weak structural plane. Based on Mohr’s strength envelope principle, it is proposed that horizontal stress is the main factor that causes a wide range of shear displacement, penetration crack, and surrounding rock failure of the roof of this kind of roadway. Through the finite element numerical simulation analysis, the deformation and failure law, stress distribution characteristics, and failure area distribution characteristics of coal and rock interbedding roadway surrounding rock are theoretically revealed, and the control effect of different support schemes on roadway surrounding rock deformation is greatly different. Based on the ultrasonic detection technology, it is proved that the roadway side failure has strong zoning characteristics, and the failure range and stress distribution range of the surrounding rock of the belt roadway in the 2103 working face of Gaojiazhuang Coal Mine are detected. Finally, the coupling strengthening support scheme combining prestressed anchor cable and bolt is proposed. The engineering application and the observation of surrounding rock deformation show that the reinforced support technology can effectively enhance the stability of the surrounding rock of the interbed roadway in Gaojiazhuang Coal Mine, and it has a good reference for the surrounding rock conditions of this kind of roadway.


Minerals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 458 ◽  
Author(s):  
Daoyong Zhu ◽  
Jiong Wang ◽  
Weili Gong ◽  
Zheng Sun

The effects of roof cutting techniques on the movement law of the overlying strata and deformation features of the surrounding rock in gob-side entry retaining mines were studied using 200 working faces of the Dianping coal mine in Shanxi Province. Using a mechanical analysis, a cantilever beam model formed by roof cutting was used to derive a deformation equation. The physical model test based on the field prototype revealed an asymmetrically distributed displacement curve and reduced collapse displacement when the rock stratum was far from the cutting seam. Outside of the roof cutting height, the collapse of the overlying strata gradually reached a symmetric distribution with increasing height. The deformation of the retained roadway was mainly concentrated on the roof, and the maximum deformation was 14 mm near the roof cutting side. A numerical simulation of the original size of the model test proved that the laws of strata movement and surrounding rock deformation were consistent with the physical test results. Finally, field measurements were performed, which verified the rationality of this study.


Sign in / Sign up

Export Citation Format

Share Document