irradiated fuel
Recently Published Documents


TOTAL DOCUMENTS

233
(FIVE YEARS 28)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
pp. 153429
Author(s):  
A. Germain ◽  
J. Sercombe ◽  
C. Riglet-Martial ◽  
C. Introïni ◽  
L. Noirot ◽  
...  

2021 ◽  
Vol 142 ◽  
pp. 103950
Author(s):  
S. Bagheri ◽  
H. Khalafi ◽  
F. Faghihi ◽  
A. Ezzati ◽  
M. Keyvani ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6538
Author(s):  
Thierry Wiss ◽  
Oliver Dieste ◽  
Emanuele De Bona ◽  
Alessandro Benedetti ◽  
Vincenzo Rondinella ◽  
...  

The transmutation of minor actinides (in particular, Np and Am), which are among the main contributors to spent fuel α-radiotoxicity, was studied in the SUPERFACT irradiation. Several types of transmutation UO2-based fuels were produced, differing by their minor actinide content (241Am, 237Np, Pu), and irradiated in the Phénix fast reactor. Due to the high content in rather short-lived alpha-decaying actinides, both the archive, but also the irradiated fuels, cumulated an alpha dose during a laboratory time scale, which is comparable to that of standard LWR fuels during centuries/millenaries of storage. Transmission Electron Microscopy was performed to assess the evolution of the microstructure of the SUPERFACT archive and irradiated fuel. This was compared to conventional irradiated spent fuel (i.e., after years of storage) and to other 238Pu-doped UO2 for which the equivalent storage time would span over centuries. It could be shown that the microstructure of these fluorites does not degrade significantly from low to very high alpha-damage doses, and that helium bubbles precipitate.


2021 ◽  
Vol 2048 (1) ◽  
pp. 012006
Author(s):  
Zhenyu Fu ◽  
Yong Yang ◽  
Isabella J. Van Rooyen ◽  
Subhashish Meher ◽  
Boopathy Kombaiah

Abstract AGR-1 and AGR-2 tristructural-isotropic (TRISO) fuel particles were fabricated using slightly different fuel kernel chemical compositions, modified fabrication processes, different fuel kernel diameters, and changed 235U enrichments. Extensive microstructural and analytical characterizations were conducted to correlate those differences with the fuel kernels’ responses to neutron irradiations in terms of irradiated fuel microstructure, fission products’ chemical and physical states, and fission gas bubble evolutions. The studies used state-of-the-art transmission electron microscopy (TEM) equipped with energy-dispersive x-ray spectroscopy (EDS) via four silicon solid-state detectors with super sensitivity and rapid speed. The TEM specimens were prepared from selected AGR-1 and AGR-2 irradiated fuel kernels exposed to safety testing after irradiation. The particles were chosen in order to create representative irradiation conditions with fuel burnup in the range of 10.8 to 18.6% fissions per initial metal atom (FIMA) and time-average volume-average temperatures varying from 1070 to 1287°C. The 235U enrichment was 19.74 wt.% and 14.03 wt.% for the AGR-1 and AGR-2 fuel kernels, respectively. The TEM results showed significant microstructural reconstructions in the irradiated fuel kernels from both the AGR-1 and AGR-2 fuels. There are four major phases: fuel matrix of UO2 and UC, U2RuC2, and UMoC2—in the irradiated AGR-2 fuel kernel. Zr and Nd form a solid solution in the UC phase. The UMoC2 phase often features a detectable concentration of Tc. Pd was mainly found to be located in the buffer layer or associated with fission gas bubbles within the UMoC2 phase. EDS maps qualitatively show that rare-earth fission products (Nd et al.) preferentially reside in the UO2 phase. In contrast, in the irradiated AGR-1 fuel kernel, no U2RuC2 or UMoC2 precipitates were positively identified. Instead, there was a high number of rod-shaped precipitates enriched with Ru, Tc, Rh, and Pd observed in the fuel kernel center and edge zone. The differences in irradiated fuel kernel microstructural and micro-chemical evolution when comparing AGR-1 and AGR-2 TRISO fuel particles may result from a combination of irradiation temperature, fuel geometry, and chemical composition. However, irradiation temperature probably plays a more deterministic role. Limited electron energy-loss spectroscopy (EELS) characterizations of the AGR-2 fuel kernel show almost no carbon in the UO2 phase, but a small fraction of oxygen was detected in the UC/UMoC2 phase.


Thermo ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 262-285
Author(s):  
Markus H. A. Piro

A number of codes are used to predict various aspects of nuclear fuel performance and safety, ranging from conventional fuel performance codes to simulate normal operating conditions to integral engineering codes to simulate severe accident behaviour. There has been a number of reportings in the open literature of nuclear fuel codes being informed by thermodynamic calculations, ranging from the use of simple thermodynamic correlations to direct coupling of equilibrium thermodynamic software. Progress in expanding predictive capabilities have been reported, which also includes advances in thermodynamic database development to better capture irradiated fuel. However, this progress has been accompanied by several challenges, including effective coupling of different types of physical phenomena in a practical manner and doing so with a reasonable increase in computational expense. This review paper will summarize previous experiences reported in the open literature in coupling thermodynamic calculations with nuclear fuel codes and applications, identify current challenges and limitations, and offer some perspectives for the community to consider moving forward.


Author(s):  
C. Schneider ◽  
L. Fayette ◽  
I. Zacharie-Aubrun ◽  
T. Blay ◽  
J. Sercombe ◽  
...  

2021 ◽  
Vol 253 ◽  
pp. 07004
Author(s):  
Thomas Doualle ◽  
Matthieu Reymond ◽  
Yves Pontillon ◽  
Laurent Gallais

Linked to experimental data acquisition and to development of improved models, a better detailed description of the behaviour of the nuclear ceramics as regard to the fission gases release during thermal transient representative of nuclear accidents such as RIA (Reactivity Initiated Accident) and or LOCA (LOss of Coolant Accident) requires access to local information within the fuel pellet, and no longer averaged over the whole of the pellet. One of the major challenge in this context is the sample size, which depends on the main objective of the study, typically from the order of a few hundred microns to millimeters. Few techniques allow this dynamic while being compatible with irradiated fuel constraints. Laser micromachining is a high precision non-contact material removal process that would be adapted to this dynamic. We present experimental and numerical studies, carried out in order to evaluate the possibility to apply this process for the preparation of irradiated UO2 samples of various dimensions. First, preliminary experimental and numerical works conduced on graphite, as model material, which have comparable properties (in particular their behaviours under laser irradiation and their melting point) in order to validate the feasibility, will be detailed. Afterwards, based on these results, we present our first results on UO2. The objective is to transfer the technique to non-irradiated UO2 and then to the irradiated material.


2021 ◽  
Vol 253 ◽  
pp. 07012
Author(s):  
Tomas Peltan ◽  
Eva Vilimova ◽  
Radek Skoda

The TEPLATOR is a new type of nuclear reactor which the main purpose is producing heat for district heating. It is designed as a special thermal reactor with 55 fuel channels for fuel assemblies, which is moderated and cooled by heavy water and operated around atmospheric pressure. The TEPLATOR DEMO is designed for the use of irradiated fuel from PWR or BWR reactors. Using heavy water as the moderator and coolant in this reactor concept allows to use natural uranium as an alternative fuel in case that the irradiated fuel is not available for some reason. This solution is suitable because of the price of natural uranium and the absence of costly fuel enrichment. This article is focused on deeper analyses of alternative suitable fuel for TEPLATOR based on natural uranium and new fuel geometries. This work builds on previous research on alternative fuel material and geometry for the TEPLATOR. It is mainly concerned with the neutronic development of fuel assemblies, the possibility of manufacturing of developed fuel types, and optimization of fuel management and uranium consumption. This article contains predetermined candidates for suitable fuel geometries and new untested fuel geometry types with some new advantages. Finally, optimization of the whole reactor core and number of fuel channels was made in terms of increased safety and higher fuel burn-up. Presented calculations were performed by Monte Carlo code Seprent.


Sign in / Sign up

Export Citation Format

Share Document