scholarly journals Energy Dependence of Particle Ratios in High Energy Nucleus-Nucleus Collisions: A USTFM Approach

2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Inam-ul Bashir ◽  
Rameez Ahmad Parra ◽  
Hamid Nanda ◽  
Saeed Uddin

We study the identified particle ratios produced at mid-rapidity (y<0.5) in heavy-ion collisions, along with their correlations with the collision energy. We employ our earlier proposed unified statistical thermal freeze-out model (USTFM), which incorporates the effects of both longitudinal and transverse hydrodynamic flow in the hot hadronic system. A fair agreement seen between the experimental data and our model results confirms that the particle production in these collisions is of statistical nature. The variation of the chemical freeze-out temperature and the baryon chemical potential with respect to collision energies is studied. The chemical freeze-out temperature is found to be almost constant beyond the RHIC energy and is found to be close to the QCD predicted phase-transition temperature suggesting that the chemical freeze-out occurs soon after the hadronization takes place. The vanishing value of chemical potential at LHC indicates very high degree of nuclear transparency in the collision.

2015 ◽  
Vol 2015 ◽  
pp. 1-20 ◽  
Author(s):  
Sandeep Chatterjee ◽  
Sabita Das ◽  
Lokesh Kumar ◽  
D. Mishra ◽  
Bedangadas Mohanty ◽  
...  

We review the chemical and kinetic freeze-out conditions in high energy heavy-ion collisions for AGS, SPS, RHIC, and LHC energies. Chemical freeze-out parameters are obtained using produced particle yields in central collisions while the corresponding kinetic freeze-out parameters are obtained using transverse momentum distributions of produced particles. For chemical freeze-out, different freeze-out scenarios are discussed such as single and double/flavor dependent freeze-out surfaces. Kinetic freeze-out parameters are obtained by doing hydrodynamic inspired blast wave fit to the transverse momentum distributions. The beam energy and centrality dependence of transverse energy per charged particle multiplicity are studied to address the constant energy per particle freeze-out criteria in heavy-ion collisions.


2014 ◽  
Vol 29 (17) ◽  
pp. 1430021 ◽  
Author(s):  
Abdel Nasser Tawfik

We review some recent highlights from the applications of statistical–thermal models to different experimental measurements and lattice QCD thermodynamics that have been made during the last decade. We start with a short review of the historical milestones on the path of constructing statistical–thermal models for heavy-ion physics. We discovered that Heinz Koppe formulated in 1948, an almost complete recipe for the statistical–thermal models. In 1950, Enrico Fermi generalized this statistical approach, in which he started with a general cross-section formula and inserted into it, the simplifying assumptions about the matrix element of the interaction process that likely reflects many features of the high-energy reactions dominated by density in the phase space of final states. In 1964, Hagedorn systematically analyzed the high-energy phenomena using all tools of statistical physics and introduced the concept of limiting temperature based on the statistical bootstrap model. It turns to be quite often that many-particle systems can be studied with the help of statistical–thermal methods. The analysis of yield multiplicities in high-energy collisions gives an overwhelming evidence for the chemical equilibrium in the final state. The strange particles might be an exception, as they are suppressed at lower beam energies. However, their relative yields fulfill statistical equilibrium, as well. We review the equilibrium statistical–thermal models for particle production, fluctuations and collective flow in heavy-ion experiments. We also review their reproduction of the lattice QCD thermodynamics at vanishing and finite chemical potential. During the last decade, five conditions have been suggested to describe the universal behavior of the chemical freeze-out parameters. The higher order moments of multiplicity have been discussed. They offer deep insights about particle production and to critical fluctuations. Therefore, we use them to describe the freeze-out parameters and suggest the location of the QCD critical endpoint. Various extensions have been proposed in order to take into consideration the possible deviations of the ideal hadron gas. We highlight various types of interactions, dissipative properties and location-dependences (spatial rapidity). Furthermore, we review three models combining hadronic with partonic phases; quasi-particle model, linear sigma model with Polyakov potentials and compressible bag model.


2016 ◽  
Vol 25 (03) ◽  
pp. 1650018 ◽  
Author(s):  
A. Tawfik ◽  
M. Y. El-Bakry ◽  
D. M. Habashy ◽  
M. T. Mohamed ◽  
E. Abbas

At thermal equilibrium, different chemical freeze-out conditions have been proposed so far. They have an ultimate aim of proposing a universal description for the chemical freeze-out parameters ([Formula: see text] and [Formula: see text]), which are to be extracted from the statistical fitting of different particle ratios measured at various collision energies with calculations from thermal models. A systematic comparison between these conditions is presented. The physical meaning of each of them and their sensitivity to the hadron mass cuts are discussed. Based on availability, some of them are compared with recent lattice calculations. We found that most of these conditions are thermodynamically equivalent, especially at small baryon chemical potential. We propose that further crucial consistency tests should be performed at low energies. The fireball thermodynamics is another way of guessing conditions describing the chemical freeze-out parameters extracted from high-energy experiments. We endorse the possibility that the various chemical freeze-out conditions should be interpreted as different aspects of one universal condition.


1990 ◽  
Vol 42 (4) ◽  
pp. 1519-1529 ◽  
Author(s):  
S. Shaheen ◽  
F. D. Becchetti ◽  
D. A. Roberts ◽  
J. W. Jänecke ◽  
R. L. Stern ◽  
...  

2007 ◽  
Vol 16 (07n08) ◽  
pp. 1883-1889 ◽  
Author(s):  
◽  
DEBASISH DAS

The influence of Bose–Einstein statistics on multi-particle production characterized for various systems and energies by the STAR collaboration provides interesting information about the space-time dynamics of relativistic heavy-ion collisions at RHIC. We present the centrality and transverse mass dependence measurements of the two-pion interferometry in Au + Au collisions at [Formula: see text] and Cu + Cu collisions at [Formula: see text] and 200 GeV. We compare the new data with previous STAR measurements from p + p , d + Au and Au + Au collisions at [Formula: see text]. In all systems and centralities, HBT radii decrease with transverse mass in a similar manner, which is qualitatively consistent with collective flow. The scaling of the apparent freeze-out volume with the number of participants and charged particle multiplicity is studied. Measurements of Au + Au collisions at same centralities and different energies yield different freeze-out volumes, which mean that N part is not a suitable scaling variable. The multiplicity scaling of the measured HBT radii is found to be independent of colliding system and collision energy.


2018 ◽  
Vol 172 ◽  
pp. 05010 ◽  
Author(s):  
Christine Nattrass

The Quark Gluon Plasma (QGP) is created in high energy heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). This medium is transparent to electromagnetic probes but nearly opaque to colored probes. Hard partons produced early in the collision fragment and hadronize into a collimated spray of particles called a jet. The partons lose energy as they traverse the medium, a process called jet quenching. Most of the lost energy is still correlated with the parent parton, contributing to particle production at larger angles and lower momenta relative to the parent parton than in proton-proton collisions. This partonic energy loss can be measured through several observables, each of which give different insights into the degree and mechanism of energy loss. The measurements to date are summarized and the path forward is discussed.


Sign in / Sign up

Export Citation Format

Share Document