scholarly journals An Object Proxy-Based Dynamic Layer Replacement to Protect IoMT Applications

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Bo Han ◽  
Zhao Yin-Liang ◽  
Zhu Chang-Peng

The Internet of medical things (IoMT) has become a promising paradigm, where the invaluable additional data can be collected by the ordinary medical devices when connecting to the Internet. The deep understanding of symptoms and trends can be provided to patients to manage their lives and treatments. However, due to the diversity of medical devices in IoMT, the codes of healthcare applications may be manipulated and tangled by malicious devices. In addition, the linguistic structures for layer activation in languages cause controls of layer activation to be part of program’s business logic, which hinders the dynamic replacement of layers. Therefore, to solve the above critical problems in IoMT, in this paper, a new approach is firstly proposed to support the dynamic replacement of layer in IoMT applications by incorporating object proxy into virtual machine (VM). Secondly, the heap and address are used to model the object and object evolution to guarantee the feasibility of the approach. After that, we analyze the influences of field access and method invocation and evaluate the risk and safety of the application when these constraints are satisfied. Finally, we conduct the evaluations by extending Java VM to validate the effectiveness of the proposal.

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Bikash Pradhan ◽  
Saugat Bhattacharyya ◽  
Kunal Pal

The last decade has witnessed extensive research in the field of healthcare services and their technological upgradation. To be more specific, the Internet of Things (IoT) has shown potential application in connecting various medical devices, sensors, and healthcare professionals to provide quality medical services in a remote location. This has improved patient safety, reduced healthcare costs, enhanced the accessibility of healthcare services, and increased operational efficiency in the healthcare industry. The current study gives an up-to-date summary of the potential healthcare applications of IoT- (HIoT-) based technologies. Herein, the advancement of the application of the HIoT has been reported from the perspective of enabling technologies, healthcare services, and applications in solving various healthcare issues. Moreover, potential challenges and issues in the HIoT system are also discussed. In sum, the current study provides a comprehensive source of information regarding the different fields of application of HIoT intending to help future researchers, who have the interest to work and make advancements in the field to gain insight into the topic.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1273
Author(s):  
Amjad Rehman ◽  
Khalid Haseeb ◽  
Tanzila Saba ◽  
Jaime Lloret ◽  
Usman Tariq

The Internet of Medical Things (IoMT) has shown incredible development with the growth of medical systems using wireless information technologies. Medical devices are biosensors that can integrate with physical things to make smarter healthcare applications that are collaborated on the Internet. In recent decades, many applications have been designed to monitor the physical health of patients and support expert teams for appropriate treatment. The medical devices are attached to patients’ bodies and connected with a cloud computing system for obtaining and analyzing healthcare data. However, such medical devices operate on battery powered sensors with limiting constraints in terms of memory, transmission, and processing resources. Many healthcare solutions are helping the community with the efficient monitoring of patients’ conditions using cloud computing, however, mostly incur latency in data collection and storage. Therefore, this paper presents a model for the Secured Big Data analytics using Edge–Cloud architecture (SBD-EC), which aims to provide distributed and timely computation of a decision-oriented medical system. Moreover, the mobile edges cooperate with the cloud level to present a secure algorithm, achieving reliable availability of medical data with privacy and security against malicious actions. The performance of the proposed model is evaluated in simulations and the results obtained demonstrate significant improvement over other solutions.


2014 ◽  
Vol 7 (2) ◽  
pp. 195-203 ◽  
Author(s):  
Richard A. Formato

Variable Z0(VZ0) antenna technology is a new design or optimization methodology applicable to any antenna on any platform designed or optimized with any procedure. It should be particularly useful for wireless devices populating the Internet of Things. VZ0expands the design or decision space by adding another degree of freedom invariably leading to better antennas. A simple design example illustrates its effectiveness.


2008 ◽  
Vol 26 (2-4) ◽  
pp. 161-181 ◽  
Author(s):  
Gerhard Andersson ◽  
Jan Bergström ◽  
Monica Buhrman ◽  
Per Carlbring ◽  
Fredrik Holländare ◽  
...  

2015 ◽  
Vol 9 (1) ◽  
pp. 256-261 ◽  
Author(s):  
Aiyu Hao ◽  
Ling Wang

At present, hospitals in our country have basically established the HIS system, which manages registration, treatment, and charge, among many others, of patients. During treatment, patients need to use medical devices repeatedly to acquire all sorts of inspection data. Currently, the output data of the medical devices are often manually input into information system, which is easy to get wrong or easy to cause mismatches between inspection reports and patients. For some small hospitals of which information construction is still relatively weak, the information generated by the devices is still presented in the form of paper reports. When doctors or patients want to have access to the data at a given time again, they can only look at the paper files. Data integration between medical devices has long been a difficult problem for the medical information system, because the data from medical devices lack mandatory unified global standards and have outstanding heterogeneity of devices. In order to protect their own interests, manufacturers use special protocols, etc., thus causing medical devices to still be the "lonely island" of hospital information system. Besides, unfocused application of the data will lead to failure to achieve a reasonable distribution of medical resources. With the deepening of IT construction in hospitals, medical information systems will be bound to develop toward mobile applications, intelligent analysis, and interconnection and interworking, on the premise that there is an effective medical device integration (MDI) technology. To this end, this paper presents a MDI model based on the Internet of Things (IoT). Through abstract classification, this model is able to extract the common characteristics of the devices, resolve the heterogeneous differences between them, and employ a unified protocol to integrate data between devices. And by the IoT technology, it realizes interconnection network of devices and conducts associate matching between the data and the inspection with the terminal device in a timely manner.


2014 ◽  
Vol 11 (3) ◽  
pp. 229-232
Author(s):  
Rahul Hingole ◽  
Vilas Nandedkar

The term springback is defined as the change in geometry of a component after forming, when the forces are removed from forming tools. As springback affects the final shape of the part, it can lead to significant difficulties in the assembly of component when springback is not proper. This problem leads to fabrication of inconsistent sheet metal parts; the elastic strain recovery in the material after the tooling is removed. Bendingis the plastic deformation of metals about a linear axis called the bending axis with little or no change in the surface area. Bending types of forming operations have been used widely in sheet metal forming industries to produce structural stamping parts such as braces, brackets, supports, hinges, angles, frames, channel and other nonsymmetrical sheet metal parts. Among them, quite a few efforts have been made to obtain a deep understanding of the springback phenomenon. The beam theory has been applied to formulate the curvature before and after loading of pipe. This research work has focused on study effect of springback effect with a new approach. The ANSYS software is used to analyze spring back effect. The detail study of this springback effect is presented in this paper.


Sign in / Sign up

Export Citation Format

Share Document