scholarly journals A Similar Distribution Discriminant Analysis with Orthogonal and Nearly Statistically Uncorrelated Characteristics

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Zhibo Guo ◽  
Ying Zhang

It is very difficult to process and analyze high-dimensional data directly. Therefore, it is necessary to learn a potential subspace of high-dimensional data through excellent dimensionality reduction algorithms to preserve the intrinsic structure of high-dimensional data and abandon the less useful information. Principal component analysis (PCA) and linear discriminant analysis (LDA) are two popular dimensionality reduction methods for high-dimensional sensor data preprocessing. LDA contains two basic methods, namely, classic linear discriminant analysis and FS linear discriminant analysis. In this paper, a new method, called similar distribution discriminant analysis (SDDA), is proposed based on the similarity of samples’ distribution. Furthermore, the method of solving the optimal discriminant vector is given. These discriminant vectors are orthogonal and nearly statistically uncorrelated. The disadvantages of PCA and LDA are overcome, and the extracted features are more effective by using SDDA. The recognition performance of SDDA exceeds PCA and LDA largely. Some experiments on the Yale face database, FERET face database, and UCI multiple features dataset demonstrate that the proposed method is effective. The results reveal that SDDA obtains better performance than comparison dimensionality reduction methods.

2012 ◽  
Vol 42 (2) ◽  
pp. 209-231 ◽  
Author(s):  
Masashi Hyodo ◽  
Takayuki Yamada ◽  
Tetsuo Himeno ◽  
Takashi Seo

2011 ◽  
Vol 39 (2) ◽  
pp. 1241-1265 ◽  
Author(s):  
Jun Shao ◽  
Yazhen Wang ◽  
Xinwei Deng ◽  
Sijian Wang

Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 367
Author(s):  
Janez Lapajne ◽  
Matej Knapič ◽  
Uroš Žibrat

Hyperspectral imaging is a popular tool used for non-invasive plant disease detection. Data acquired with it usually consist of many correlated features; hence most of the acquired information is redundant. Dimensionality reduction methods are used to transform the data sets from high-dimensional, to low-dimensional (in this study to one or a few features). We have chosen six dimensionality reduction methods (partial least squares, linear discriminant analysis, principal component analysis, RandomForest, ReliefF, and Extreme gradient boosting) and tested their efficacy on a hyperspectral data set of potato tubers. The extracted or selected features were pipelined to support vector machine classifier and evaluated. Tubers were divided into two groups, healthy and infested with Meloidogyne luci. The results show that all dimensionality reduction methods enabled successful identification of inoculated tubers. The best and most consistent results were obtained using linear discriminant analysis, with 100% accuracy in both potato tuber inside and outside images. Classification success was generally higher in the outside data set, than in the inside. Nevertheless, accuracy was in all cases above 0.6.


2007 ◽  
Vol 3 ◽  
pp. 117693510700300 ◽  
Author(s):  
Nadège Dossat ◽  
Alain Mangé ◽  
Jérôme Solassol ◽  
William Jacot ◽  
Ludovic Lhermitte ◽  
...  

A key challenge in clinical proteomics of cancer is the identification of biomarkers that could allow detection, diagnosis and prognosis of the diseases. Recent advances in mass spectrometry and proteomic instrumentations offer unique chance to rapidly identify these markers. These advances pose considerable challenges, similar to those created by microarray-based investigation, for the discovery of pattern of markers from high-dimensional data, specific to each pathologic state (e.g. normal vs cancer). We propose a three-step strategy to select important markers from high-dimensional mass spectrometry data using surface enhanced laser desorption/ionization (SELDI) technology. The first two steps are the selection of the most discriminating biomarkers with a construction of different classifiers. Finally, we compare and validate their performance and robustness using different supervised classification methods such as Support Vector Machine, Linear Discriminant Analysis, Quadratic Discriminant Analysis, Neural Networks, Classification Trees and Boosting Trees. We show that the proposed method is suitable for analysing high-throughput proteomics data and that the combination of logistic regression and Linear Discriminant Analysis outperform other methods tested.


2020 ◽  
Vol 49 (3) ◽  
pp. 421-437
Author(s):  
Genggeng Liu ◽  
Lin Xie ◽  
Chi-Hua Chen

Dimensionality reduction plays an important role in the data processing of machine learning and data mining, which makes the processing of high-dimensional data more efficient. Dimensionality reduction can extract the low-dimensional feature representation of high-dimensional data, and an effective dimensionality reduction method can not only extract most of the useful information of the original data, but also realize the function of removing useless noise. The dimensionality reduction methods can be applied to all types of data, especially image data. Although the supervised learning method has achieved good results in the application of dimensionality reduction, its performance depends on the number of labeled training samples. With the growing of information from internet, marking the data requires more resources and is more difficult. Therefore, using unsupervised learning to learn the feature of data has extremely important research value. In this paper, an unsupervised multilayered variational auto-encoder model is studied in the text data, so that the high-dimensional feature to the low-dimensional feature becomes efficient and the low-dimensional feature can retain mainly information as much as possible. Low-dimensional feature obtained by different dimensionality reduction methods are used to compare with the dimensionality reduction results of variational auto-encoder (VAE), and the method can be significantly improved over other comparison methods.


Sign in / Sign up

Export Citation Format

Share Document