scholarly journals Fit Evaluation during Repetition Interaction in Garment Pattern Design

2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Yuxiang Zhu ◽  
Yanjun Peng

We present a novel virtual try-on solution for fitting evaluation and pattern modification to design various types of garment and speed up the garment design process. In the phase of fit evaluation, we propose a method for producing two-dimensional (2D) color maps by comparing a 2D triangle mesh panel garment and a 3D triangle mesh garment, which can display the fit evaluation outcome in real time. In the phase of pattern modification, a novel prior condition based on maximum entropy coordinates and a more comprehensive mean value coordinates interpolation algorithm are proposed. By a combination of the two deformation methods, the positions of the internal vertices are updated smoothly. Applying the proposed method to the repetition of the garment design procedure, the experimental results show that it can easily pinpoint the location where it needs to be modified and can achieve arbitrary pattern modification with a smooth mesh update.

Author(s):  
Andrea Belleri ◽  
Simone Labò

AbstractThe seismic performance of precast portal frames typical of the industrial and commercial sector could be generally improved by providing additional mechanical devices at the beam-to-column joint. Such devices could provide an additional degree of fixity and energy dissipation in a joint generally characterized by a dry hinged connection, adopted to speed-up the construction phase. Another advantage of placing additional devices at the beam-to-column joint is the possibility to act as a fuse, concentrating the seismic damage on few sacrificial and replaceable elements. A procedure to design precast portal frames adopting additional devices is provided herein. The procedure moves from the Displacement-Based Design methodology proposed by M.J.N. Priestley, and it is applicable for both the design of new structures and the retrofit of existing ones. After the derivation of the required analytical formulations, the procedure is applied to select the additional devices for a new and an existing structural system. The validation through non-linear time history analyses allows to highlight the advantages and drawbacks of the considered devices and to prove the effectiveness of the proposed design procedure.


2005 ◽  
Vol 24 (3) ◽  
pp. 561-566 ◽  
Author(s):  
Tao Ju ◽  
Scott Schaefer ◽  
Joe Warren

2012 ◽  
Vol 263-266 ◽  
pp. 1822-1829
Author(s):  
Zheng Jie Deng ◽  
Feng Wei Wang ◽  
Guo Yuan Chen ◽  
Chun Shi ◽  
Shu Qian He ◽  
...  

This paper proposes a mesh deformation method being able to quickly exchange between different editing granularities. The method firstly simplifies the original model mesh to obtain an accuracy-specified control mesh while preserving user’s pre-configured control handle vertices, and then computes the original mesh vertices’ mean value coordinates on the control mesh. Next, uses the Laplacian deformation to deform the control mesh with user’s editing, and then computes the deforming result based on the new control mesh and the previous mean value coordinates. Users can quickly generate a different accuracy control mesh of the new mesh again for deforming with a different granularity. Users only need edit some control vertices, which contains user’s specified handles, so the manipulation is convenient. Experiments show that users can deform models with this method, while changing the granularity fluently and preserving mesh’s features.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Prabhat Kumar ◽  
Anupam Saxena ◽  
Roger A. Sauer

Topologies of large deformation contact-aided compliant mechanisms (CCMs), with self and mutual contact, exemplified via path generation applications, are designed using the continuum synthesis approach. Design domain is parameterized using honeycomb tessellation. Assignment of material to each cell, and generation of rigid contact surfaces, are accomplished via suitably sizing and positioning negative circular masks using the stochastic hill-climber search. To facilitate contact analysis, boundary smoothing is implemented. Mean value coordinates are employed to compute shape functions, as many regular hexagonal cells get degenerated into irregular, concave polygons as a consequence of boundary smoothing. Both geometric and material nonlinearities are considered. The augmented Lagrange multiplier method with a formulated active set strategy is employed to incorporate both self and mutual contact. Synthesized contact-aided compliant continua trace paths with single, and importantly, multiple kinks and experience multiple contact interactions pertaining to both self and mutual contact modes.


2013 ◽  
Vol 32 (4) ◽  
pp. 1-10 ◽  
Author(s):  
Xian-Ying Li ◽  
Tao Ju ◽  
Shi-Min Hu

2016 ◽  
Vol 138 (6) ◽  
Author(s):  
Prabhat Kumar ◽  
Roger A. Sauer ◽  
Anupam Saxena

Contact-aided compliant mechanisms (CCMs) are synthesized via the material mask overlay strategy (MMOS) to trace desired nonsmooth paths. MMOS employs hexagonal cells to discretize the design region and engages negative circular masks to designate material states. To synthesize CCMs, the modified MMOS presented herein involves systematic mutation of five mask parameters through a hill climber search to evolve not only the continuum topology but also to position the rigid, interacting surfaces within some masks. To facilitate analysis with contact, boundary smoothing is performed by shifting boundary nodes of the evolving continuum. Various geometric singularities are subdued via hexagonal cells, and the V-notches at the continuum boundaries are alleviated. Numerous hexagonal cells get morphed into concave subregions as a consequence. Large deformation finite-element formulation with mean-value coordinates based shape functions is used to cater to the generic hexagonal shapes. Contact analysis is accomplished via the Newton–Raphson (NR) iteration with load incrementing in conjunction with the augmented Lagrange multiplier method and active set constraints. An objective function based on Fourier shape descriptors (FSDs) is minimized subject to suitable design constraints. Two examples of path-generating CCMs are presented, their performance compared with a commercial software and fabricated to establish the efficacy of the proposed synthesis method.


Sign in / Sign up

Export Citation Format

Share Document