scholarly journals Intra-Bone Marrow Administration of Mesenchymal Stem/Stromal Cells Is a Promising Approach for Treating Osteoporosis

2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Hideki Agata ◽  
Yoshinori Sumita ◽  
Tatsuro Hidaka ◽  
Mayumi Iwatake ◽  
Hideaki Kagami ◽  
...  

Mesenchymal stem/stromal cells (MSCs) are known to be useful for treating local bone diseases. However, it is not known if MSCs are effective for treating systemic bone diseases, as the risk for mortality following intravenous MSC administration has hindered research progress. In this study, we compared the safety and efficacy of intra-bone marrow and intravenous administration of MSCs for the treatment of ovariectomy- (OVX-) induced osteoporosis. Cells capable of forming bone were isolated from the murine compact bones and expanded in culture. Relatively pure MSCs possessing increased potential for cell proliferation, osteogenic differentiation, and inhibition of osteoclastogenesis were obtained by magnetic-activated cell sorting with the anti-Sca-1 antibody. Sca-1-sorted MSCs were administered to OVX mice, which were sacrificed 1 month later. We observed that 22% of the mice died after intravenous administration, whereas none of the mice died after intra-bone marrow administration. With respect to efficacy, intravenous administration improved bone mineral density (BMD) by increasing bone mineral content without affecting bone thickness, whereas intra-bone marrow administration improved BMD by increasing both bone mineral content and bone thickness. These results indicate that intra-bone marrow administration of pure MSCs is a safer and more effective approach for treating osteoporosis.

Author(s):  
Homa Hajisadeghi ◽  
Mohammad Ali Azarbayjani ◽  
Mohammadreza Vafaeenasab ◽  
Maghsoud Peeri ◽  
Mohamad Mahdi Modares Mosala

Background: Postmenopausal osteoporosis progressively occurs due to alteration in the estrogen level during the menopause period, and subsequently elevates the risk of fractures. Objective: To evaluate the effect of regular resistance exercise, vitamin D, and calcium supplements on bone mineral content and density, postmenopausal rats used. Materials and Methods: In this experimental study, 72 female Sprague-Dawley rats (8-10 wk: 250 ± 15 gr) were ovariectomized and randomly divided into nine groups (n = 8/each): control, placebo, exercise (EX), exercise with vitamin D supplement (EX + D), exercise with calcium (EX + Ca), exercise with calcium and vitamin D (EX + Ca + D), vitamin D administration (D), calcium administration (Ca), and calcium and vitamin D (Ca + D) groups. Finally, the tail, hip, and lumbar bone mineral content, bone mineral density, bone thickness, and bone cells were evaluated in each group. Results: The tail, hip, and lumbar bone mineral density was increased significantly in the EX + Vit D group compared to the control group (p = 0.004, p = 0.007, p = 0.003, respectively). However, there were no significant changes in the bone mineral content of the hips and lumbar among the groups. Besides, bone thickness in the Ex + Vit D group was more than the other groups (p = 0.02). The number of osteoclast cells decreased in the Ca + Vit D, Ex + Ca, Ex + Vit D, and Ex + Vit D + Ca groups compared to the control group. Osteocyte numbers were increased only in the Ex + Vit D group. Conclusion: Resistance exercise in combination with vitamin D and calcium have a positive effect on the bone mineral density and bone mineral content and might be able to prevent or delay the osteoporosis among elderly women. However, additional researches are needed to assess the molecular pathways of this process. Key words: Menopause, Vitamin D, Exercise, Calcium, Bone mineral density.


2013 ◽  
Author(s):  
N Hangartner Thomas ◽  
F Short David ◽  
Gilsanz Vicente ◽  
J Kalkwarf Heidi ◽  
M Lappe Joan ◽  
...  

1996 ◽  
Vol 82 (1) ◽  
pp. 65-67 ◽  
Author(s):  
Sandro Barni ◽  
Paolo Lissoni ◽  
Gabriele Tancini ◽  
Antonio Ardizzoia ◽  
Marina Cazzaniga

In this study, the authors have analyzed the possible effects of one-year adjuvant treatment with tamoxifen on bone mineral density in postmenopausal breast cancer women. Bone mineral content was studied by photon absorptiometry (I-125), whereas bone balance was analyzed indirectly by serum PTH, osteocalcin, calcitonin, calcium and alkaline phosphatase levels. Bone mineral content and serum bone-related substances were measured before starting treatment and after one year. Results were analyzed using Student's t test for paired data. No difference was found between the two measurements for bone mineral content, PTH, calcitonin, calcium and alkaline phosphatase levels. Measurements at entry and after one year of treatment showed a statistically significant difference ( P < 0.001) only for osteocalcin. In accordance with other authors, we can conclude that treatment with tamoxifen does not cause an increase in menopausal bone resorption. The finding that osteocalcin levels decreased after one year of therapy with tamoxifen is interesting, but further studies are necessary to clarify the role of such levels in predicting a turnover of bone balance towards osteoblastic activity.


2011 ◽  
Vol 78 (6) ◽  
pp. 616-618 ◽  
Author(s):  
Katarzyna Wesolowska ◽  
Bozena Czarkowska-Paczek ◽  
Jerzy Przedlacki ◽  
Jacek Przybylski

Bone ◽  
2006 ◽  
Vol 38 (3) ◽  
pp. 13 ◽  
Author(s):  
Arjun L. Khandare ◽  
G. Shanker Rao ◽  
N. Balakrishna

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Yasumoto Matsui ◽  
Marie Takemura ◽  
Atsushi Harada ◽  
Fujiko Ando ◽  
Hiroshi Shimokata

Bone mineral density (aBMD) is equivalent to bone mineral content (BMC) divided by area. We rechecked the significance of aBMD changes in aging by examining BMC and area separately. Subjects were 1167 community-dwelling Japanese men and women, aged 40–79 years. ABMDs of femoral neck and lumbar spine were assessed by DXA twice, at 6-year intervals. The change rates of BMC and area, as well as aBMD, were calculated and described separately by the age stratum and by sex. In the femoral neck region, aBMDs were significantly decreased in all age strata by an increase in area as well as BMC loss in the same pattern in both sexes. In the lumbar spine region, aBMDs decreased until the age of 60 in women, caused by the significant BMC decrease accompanying the small area change. Very differently in men, aBMDs increased after their 50s due to BMC increase, accompanied by an area increase. Separate analyses of BMC and area change revealed that the significance of aBMD changes in aging was very divergent among sites and between sexes. This may explain in part the dissociation of aBMD change and bone strength, suggesting that we should be more cautious when interpreting the meaning of aBMD change.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Vishwajeeth Pasham ◽  
Deborah Stewart ◽  
Laura Carbone ◽  
Gregory A Harshfield

Background: Previous literature has shown a strong negative effect of angiotensin II (ANGII) on bone metabolism within mouse models. Additionally, psychological stress has been associated with activation of the renin-angiotensin-aldosterone system (RAAS). Stress has also been related to lower total bone mineral density (TBMD). However, there is controversy in the literature examining the relationship between the RAAS and bone metabolism within humans and stress has not been considered as a direct link between these systems. Purpose: We aimed to examine the relationship between stress-induced RAAS activation and TBMD and total bone mineral content (TBMC). Methods: Participants were placed on a sodium controlled diet for three days. Participants then underwent two hours rest, one hour mental stressor, and two hours recovery with hourly collections of blood/urine samples. Renin, ANGII, aldosterone, TBMD and TBMC were measured. Results: This study recruited 586 adolescents (mean age 16±1.116) with 51% women and 62% African-American and 38% Caucasian. Overall, relationships were observed between ANGII and aldosterone, and TBMC and TBMD controlling for age, race, and BMI. During stress, aldosterone was related to TBMD (r=-.150, p<0.05) and ANGII was related to TBMC (r=-.156, p<0.05) and TBMD (r=-.139, p<0.05). When comparing males and females, only females demonstrated a relationship between TBMC and ANGII in response to stress (stress: r=-.229, p<0.05; post-stress: r=-.277, p<0.01) and between aldosterone and TBMC (stress: r=-.199, p<0.05) and TBMD (stress: r=-.250, p<0.01). Renin was not significantly correlated with TBMD nor TBMC in any population. Conclusion/Interpretations: These data suggest that stress-induced RAAS activation may be associated with lower TBMD and TBMC in girls. Despite small correlations, consistency across multiple measures of RAAS activation being apparent in adolescents is significant. This observation may indicate that stress activation of RAAS contributes to bone remodeling in early life.


2020 ◽  
Vol 12 (5) ◽  
pp. 431-440 ◽  
Author(s):  
Alejandro Gómez-Bruton ◽  
Jorge Marín-Puyalto ◽  
Borja Muñiz-Pardos ◽  
Gabriel Lozano-Berges ◽  
Cristina Cadenas-Sanchez ◽  
...  

Background: The positive association between physical fitness and bone structure has been widely investigated in children and adolescents, yet no studies have evaluated this influence in young children (ie, preschoolers). Hypothesis: Fit children will present improved bone variables when compared with unfit children, and no sex-based differences will emerge in the sample. Study Design: Cross-sectional study. Level of Evidence: Level 3. Methods: Handgrip strength, standing long jump (SLJ), speed/agility, balance, and cardiorespiratory fitness (CRF) were assessed using the Assessing FITness levels in PREschoolers (PREFIT) test battery in 92 children (50 boys; age range, 3-5 years). A peripheral quantitative computed tomography scan was performed at 38% of the length of the nondominant tibia. Cluster analysis from handgrip strength, SLJ, speed/agility, and CRF was developed to identify fitness groups. Bone variables were compared between sexes and between cluster groups. The association between individual physical fitness components and different bone variables was also tested. Results: Three cluster groups emerged: fit (high values on all included physical fitness variables), strong (high strength values and low speed/agility and CRF), and unfit (low strength, speed/agility, and CRF). The fit group presented higher values than the strong and unfit groups for total and cortical bone mineral content, cortical area, and polar strength strain index (all P < 0.05). The fit group also presented a higher cortical thickness when compared with the unfit group ( P < 0.05). Handgrip, SLJ, and speed/agility predicted all bone variables except for total and cortical volumetric bone mineral density. No differences were found for bone variables between sexes. Conclusion: The results suggest that global fitness in preschoolers is a key determinant for bone structure and strength but not volumetric bone mineral density. Clinical Relevance: Physical fitness is a determinant for tibial bone mineral content, structure, and strength in very young children. Performing physical fitness tests could provide useful information related to bone health in preschoolers.


Sign in / Sign up

Export Citation Format

Share Document