scholarly journals Signal Detection Based on Parallel Group Detection Algorithm for High-Load Massive MIMO Systems

2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Thanh-Binh Nguyen ◽  
Minh-Tuan Le ◽  
Vu-Duc Ngo

In this paper, a parallel group detection (PGD) algorithm is proposed in order to address the degradation in the bit error rate (BER) performance of linear detectors when they are used in high-load massive MIMO systems. The algorithm is constructed by converting the equivalent extended massive MIMO system into two subsystems, which can be simultaneously detected by the classical detection procedures. Then, using the PGD and the classical ZF as well as the QR-decomposition- (QRD-) based detectors, we proposed two new detectors, called ZF-based PGD (ZF-PGD) and QRD-based PGD (QRD-PGD). The PGD is further combined with the sorted longest basis (SLB) algorithm to make the signal recovery more accurate, thereby resulting in two new detectors, namely, the ZF-PGD-SLB and the QRD-PGD-SLB. Various complexity evaluations and simulations prove that the proposed detectors can significantly improve the BER performance compared to their classical linear and QRD counterparts with the practical complexity levels. Hence, our proposed detectors can be used as efficient means of estimating the transmitted signals in high-load massive MIMO systems.

Author(s):  
Thanh-Binh Nguyen ◽  
Minh-Tuan Le ◽  
Vu-Duc Ngo ◽  
Tien-Dong Nguyen ◽  
Huy-Dung Han

In Multiple Input Multiple Output (MIMO) systems, the complexities of detectors depend on the size of the channel matrix. In Massive MIMO systems, detection complexity becomes remarkably higher because the dimensions of the channel matrix get much larger. In order to recover the signals in the up-link of a Massive MIMO system at reduced complexities, we first divide the system into two sub-systems. After that, we apply the Minimum Mean Square Error (MMSE) and Bell Laboratory Layer Space Time (BLAST) detectors to each subsystem, resulting in the so-called MMSE-GD and BLAST-GD detectors, respectively. To further enhance the BER performance of Massive MIMO systems under the high-load conditions, we propose two additional detectors, called MMSE-IGD and BLAST-IGD by respectively applying the conventional MMSE and BLAST on the sub-systems in an iterative manner. It is shown via computer simulation and analytical results that the proposed detectors enable the system to achieve not only higher BER performance but also low detection complexities as compared to the conventional linear detectors. Moreover, the MMSE-IGD and BLAST-IGD can significantly improve BER performance of Massive MIMO systems.


Author(s):  
Hayder Khaleel AL-Qaysi ◽  
Tahreer Mahmood ◽  
Khalid Awaad Humood

The massive MIMO system is one of the main technologies in the fifth generation (5G) of telecommunication systems, also recognized as a highly large-scale system. Constantly in massive MIMO systems, the base station (BS) is provided with a large number of antennas, and this large number of antennas need high-quantization resolution levels analog-to-digital converters (ADCs). In this situation, there will be more power consumption and hardware costs. This paper presents the simulation performance of a suggested method to investigate and analyze the effects of different quantization resolution levels of ADCs on the bit error rate (BER) performance of massive MIMO system under different operating scenarios using MATLAB software. The results show that the SNR exceeds 12 dB accounts for only 0.001% of BER signals when the number of antennas 60 with low quantization a 2 bits’ levels ADCs, approximately. But when the antenna number rises to 300, the SNR exceeds 12 dB accounts for almost 0.01% of BER transmitted signals. Comparably with the BER performance of high quantization, 4 bits-quantization resolution levels ADCs with the same different antennas have a slight degradation. Therefore, the number of antennas is a very important influence factor.


2021 ◽  
pp. 107962
Author(s):  
Jun. Zeng ◽  
Dachuan. Wang ◽  
Weiyang. Xu ◽  
Bing. Li

Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1552
Author(s):  
Tongzhou Han ◽  
Danfeng Zhao

In centralized massive multiple-input multiple-output (MIMO) systems, the channel hardening phenomenon can occur, in which the channel behaves as almost fully deterministic as the number of antennas increases. Nevertheless, in a cell-free massive MIMO system, the channel is less deterministic. In this paper, we propose using instantaneous channel state information (CSI) instead of statistical CSI to obtain the power control coefficient in cell-free massive MIMO. Access points (APs) and user equipment (UE) have sufficient time to obtain instantaneous CSI in a slowly time-varying channel environment. We derive the achievable downlink rate under instantaneous CSI for frequency division duplex (FDD) cell-free massive MIMO systems and apply the results to the power control coefficients. For FDD systems, quantized channel coefficients are proposed to reduce feedback overhead. The simulation results show that the spectral efficiency performance when using instantaneous CSI is approximately three times higher than that achieved using statistical CSI.


Author(s):  
Adeeb Salh ◽  
Lukman Audah ◽  
Nor Shahida M. Shah ◽  
Shipun A. Hamzah

<span>Massive multi-input–multi-output (MIMO) systems are crucial to maximizing energy efficiency (EE) and battery-saving technology. Achieving EE without sacrificing the quality of service (QoS) is increasingly important for mobile devices. We first derive the data rate through zero forcing (ZF) and three linear precodings: maximum ratio transmission (MRT), zero forcing (ZF), and minimum mean square error (MMSE). Performance EE can be achieved when all available antennas are used and when taking account of the consumption circuit power ignored because of high transmit power. The aim of this work is to demonstrate how to obtain maximum EE while minimizing power consumed, which achieves a high data rate by deriving the optimal number of antennas in the downlink massive MIMO system. This system includes not only the transmitted power but also the fundamental operation circuit power at the transmitter signal. Maximized EE depends on the optimal number of antennas and determines the number of active users that should be scheduled in each cell. We conclude that the linear precoding technique MMSE achieves the maximum EE more than ZF and MRT</span><em></em><span>because the MMSE is able to make the massive MIMO system less sensitive to SNR at an increased number of antennas</span><span>.</span>


2019 ◽  
Vol 12 (20) ◽  
pp. 1-10
Author(s):  
M. Kasiselvanathan ◽  
N. Sathish Kumar ◽  
◽  

Information ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 301
Author(s):  
Samarendra Nath Sur ◽  
Rabindranath Bera ◽  
Akash Kumar Bhoi ◽  
Mahaboob Shaik ◽  
Gonçalo Marques

Massive multi-input-multi-output (MIMO) systems are the future of the communication system. The proper design of the MIMO system needs an appropriate choice of detection algorithms. At the same time, Lattice reduction (LR)-aided equalizers have been well investigated for MIMO systems. Many studies have been carried out over the Korkine–Zolotareff (KZ) and Lenstra–Lenstra–Lovász (LLL) algorithms. This paper presents an analysis of the channel capacity of the massive MIMO system. The mathematical calculations included in this paper correspond to the channel correlation effect on the channel capacity. Besides, the achievable gain over the linear receiver is also highlighted. In this study, all the calculations were further verified through the simulated results. The simulated results show the performance comparison between zero forcing (ZF), minimum mean squared error (MMSE), integer forcing (IF) receivers with log-likelihood ratio (LLR)-ZF, LLR-MMSE, KZ-ZF, and KZ-MMSE. The main objective of this work is to show that, when a lattice reduction algorithm is combined with the convention linear MIMO receiver, it improves the capacity tremendously. The same is proven here, as the KZ-MMSE receiver outperforms its counterparts in a significant margin.


Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 980 ◽  
Author(s):  
Hui Feng ◽  
Xiaoqing Zhao ◽  
Zhengquan Li ◽  
Song Xing

In this paper, a novel iterative discrete estimation (IDE) algorithm, which is called the modified IDE (MIDE), is proposed to reduce the computational complexity in MIMO detection in uplink massive MIMO systems. MIDE is a revision of the alternating direction method of multipliers (ADMM)-based algorithm, in which a self-updating method is designed with the damping factor estimated and updated at each iteration based on the Euclidean distance between the iterative solutions of the IDE-based algorithm in order to accelerate the algorithm’s convergence. Compared to the existing ADMM-based detection algorithm, the overall computational complexity of the proposed MIDE algorithm is reduced from O N t 3 + O N r N t 2 to O N t 2 + O N r N t in terms of the number of complex-valued multiplications, where Ntand Nr are the number of users and the number of receiving antennas at the base station (BS), respectively. Simulation results show that the proposed MIDE algorithm performs better in terms of the bit error rate (BER) than some recently-proposed approximation algorithms in MIMO detection of uplink massive MIMO systems.


Sign in / Sign up

Export Citation Format

Share Document