scholarly journals Capacity Analysis of Lattice Reduction Aided Equalizers for Massive MIMO Systems

Information ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 301
Author(s):  
Samarendra Nath Sur ◽  
Rabindranath Bera ◽  
Akash Kumar Bhoi ◽  
Mahaboob Shaik ◽  
Gonçalo Marques

Massive multi-input-multi-output (MIMO) systems are the future of the communication system. The proper design of the MIMO system needs an appropriate choice of detection algorithms. At the same time, Lattice reduction (LR)-aided equalizers have been well investigated for MIMO systems. Many studies have been carried out over the Korkine–Zolotareff (KZ) and Lenstra–Lenstra–Lovász (LLL) algorithms. This paper presents an analysis of the channel capacity of the massive MIMO system. The mathematical calculations included in this paper correspond to the channel correlation effect on the channel capacity. Besides, the achievable gain over the linear receiver is also highlighted. In this study, all the calculations were further verified through the simulated results. The simulated results show the performance comparison between zero forcing (ZF), minimum mean squared error (MMSE), integer forcing (IF) receivers with log-likelihood ratio (LLR)-ZF, LLR-MMSE, KZ-ZF, and KZ-MMSE. The main objective of this work is to show that, when a lattice reduction algorithm is combined with the convention linear MIMO receiver, it improves the capacity tremendously. The same is proven here, as the KZ-MMSE receiver outperforms its counterparts in a significant margin.

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Gustavo Anjos ◽  
Daniel Castanheira ◽  
Adão Silva ◽  
Atílio Gameiro ◽  
Marco Gomes ◽  
...  

The exploration of the physical layer characteristics of the wireless channel is currently the object of intensive research in order to develop advanced secrecy schemes that can protect information against eavesdropping attacks. Following this line of work, in this manuscript we consider a massive MIMO system and jointly design the channel precoder and security scheme. By doing that we ensure that the precoding operation does not reduce the degree of secrecy provided by the security scheme. The fundamental working principle of the proposed technique is to apply selective random rotations in the transmitted signal at the antenna level in order to achieve a compromise between legitimate and eavesdropper channel capacities. These rotations use the phase of the reciprocal wireless channel as a common random source between the transmitter and the intended receiver. To assess the security performance, the proposed joint scheme is compared with a recently proposed approach for massive MIMO systems. The results show that, with the proposed joint design, the number of antenna elements does not influence the eavesdropper channel capacity, which is proved to be equal to zero, in contrast to previous approaches.


2017 ◽  
Vol 2017 ◽  
pp. 1-9
Author(s):  
Yihenew Beyene ◽  
Kalle Ruttik ◽  
Riku Jäntti

Massive Multiple-Input-Multiple-Output (M-MIMO) system is a promising technology that offers to mobile networks substantial increase in throughput. In Time-Division Duplexing (TDD), the uplink training allows a Base Station (BS) to acquire Channel State Information (CSI) for both uplink reception and downlink transmission. This is essential for M-MIMO systems where downlink training pilots would consume large portion of the bandwidth. In densely populated areas, pilot symbols are reused among neighboring cells. Pilot contamination is the fundamental bottleneck on the performance of M-MIMO systems. Pilot contamination effect in antenna arrays can be mitigated by treating the channel estimation problem in angular domain where channel sparsity can be exploited. In this paper, we introduce a codebook that projects the channel into orthogonal beams and apply Minimum Mean-Squared Error (MMSE) criterion to estimate the channel. We also propose data-aided channel covariance matrix estimation algorithm for angular domain MMSE channel estimator by exploiting properties of linear antenna array. The algorithm is based on simple linear operations and no matrix inversion is involved. Numerical results show that the algorithm performs well in mitigating pilot contamination where the desired channel and other interfering channels span overlapping angle-of-arrivals.


2021 ◽  
Vol 42 (2) ◽  
pp. 209
Author(s):  
Jean Marcel Faria Tonin ◽  
Taufik Abrao

Detection in multiple-input-multiple-output (MIMO) wireless communication systems is a crucial procedure in receivers since the multiple access transmission schemes generate interference due to the simultaneous transmission along with the several antennas, unlike single-input-single-output (SISO) transmission schemes. Precoding is a technique in MIMO systems used to mitigate the effects of the channel over the received signal. Hence, it is possible to adjust continuously the transmitted information to reverse the effect of the wireless channel at the receiver side. In this work, linear sub-optimal detectors and precoders for massive MIMO (M-MIMO) systems are implemented, analyzed, and compared in terms of performance-complexity trade-off. It is also being considered numerical results in both channel scenarios: a) receiver and transmitter have perfect channel state information (CSI); b) complex channel coefficients are estimated with different levels of inaccuracy. Monte-Carlo simulations (MCS) reveal that linear zero-forcing (ZF) and minimum mean squared error (MMSE) massive MIMO detectors result in a certain robustness against multi-user interference when operating under low and medium system loading, L = K/M, thanks to the favourable propagation phenomenon arising in massive MIMO systems.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Guangyan Liao ◽  
Feng Zhao

Hybrid precoding is widely used in millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems. However, most prior work on hybrid precoding focused on the fully connected hybrid architectures and the subconnected but fixed architectures in which each radio frequency (RF) chain is connected to a specific subset of the antennas. The limited work shows that dynamic subarray architectures address the tradeoff between achievable spectral efficiency and energy efficiency of mmWave massive MIMO systems. Nevertheless, in the multiuser hybrid precoding systems, the existing dynamic subarray schemes ignore the fairness of users and the problem of user selection. In this paper, we propose a novel multiuser hybrid precoding scheme for dynamic subarray architectures. Firstly, we select a multiuser set among all users according to the analog effective channel information of the base station (BS) and then design the subset of the antennas to each RF by the fairness antenna-partitioning algorithm. Finally, the optimal analog precoding vector is designed according to each subarray, and the digital precoding is designed by the minimum mean-squared error (MMSE) criterion. The simulation results show that the performance advantages of the proposed multiuser hybrid precoding scheme for dynamic subarray architectures.


2020 ◽  
Vol 10 (5) ◽  
pp. 6290-6293
Author(s):  
A. A. Alzamil

This paper investigates the performance of massive MIMO systems under the effect of multipath propagation environment. Linear Minimum Mean Squared Error (MMSE) is considered to assess the performance of BPBK/OFDM based uplink massive MIMO transmission. Bit Error Rate (BER) and channel capacity in Non Line Of Site (NLOS) multipath fading environment are presented. The results show a correlation between the number of antennas and the performance of the system.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Rao Muhammad Asif ◽  
Jehangir Arshad ◽  
Mustafa Shakir ◽  
Sohail M. Noman ◽  
Ateeq Ur Rehman

Massive multiple-input multiple-output or massive MIMO system has great potential for 5th generation (5G) wireless communication systems as it is capable of providing game-changing enhancements in area throughput and energy efficiency (EE). This work proposes a realistic and practically implementable EE model for massive MIMO systems while a general and canonical system model is used for single-cell scenario. Linear processing schemes are used for detection and precoding, i.e., minimum mean squared error (MMSE), zero-forcing (ZF), and maximum ratio transmission (MRT/MRC). Moreover, a power dissipation model is proposed that considers overall power consumption in uplink and downlink communications. The proposed model includes the total power consumed by power amplifier and circuit components at the base station (BS) and single antenna user equipment (UE). An optimal number of BS antennas to serve total UEs and the overall transmitted power are also computed. The simulation results confirm considerable improvements in the gain of area throughput and EE, and it also shows that the optimum area throughput and EE can be realized wherein a larger number of antenna arrays at BS are installed for serving a greater number of UEs.


2021 ◽  
Author(s):  
Seyedeh Samira Moosavi ◽  
Paul Fortier

Abstract Currently, localization in distributed massive MIMO (DM-MIMO) systems based on the fingerprinting (FP) approach has attracted great interest. However, this method suffers from severe multipath and signal degradation such that its accuracy is deteriorated in complex propagation environments, which results in variable received signal strength (RSS). Therefore, providing robust and accurate localization is the goal of this work. In this paper, we propose an FP-based approach to improve the accuracy of localization by reducing the noise and the dimensions of the RSS data. In the proposed approach, the fingerprints rely solely on the RSS from the single-antenna MT collected at each of the receive antenna elements of the massive MIMO base station. After creating a radio map, principal component analysis (PCA) is performed to reduce the noise and redundancy. PCA reduces the data dimension which leads to the selection of the appropriate antennas and reduces complexity. A clustering algorithm based on K-means and affinity propagation clustering (APC) is employed to divide the whole area into several regions which improves positioning precision and reduces complexity and latency. Finally, in order to have high precise localization estimation, all similar data in each cluster are modeled using a well-designed deep neural network (DNN) regression. Simulation results show that the proposed scheme improves positioning accuracy significantly. This approach has high coverage and improves average root-mean-squared error (RMSE) performance to a few meters, which is expected in 5G and beyond networks. Consequently, it also proves the superiority of the proposed method over the previous location estimation schemes.


2022 ◽  
Author(s):  
Chen Wei ◽  
Kui Xu ◽  
Zhexian Shen ◽  
Xiaochen Xia ◽  
Wei Xie ◽  
...  

Abstract In this paper, we investigate the uplink transmission for user-centric cell-free massive multiple-input multiple-output (MIMO) systems. The largest-large-scale-fading-based access point (AP) selection method is adopted to achieve a user-centric operation. Under this user-centric framework, we propose a novel inter-cluster interference-based (IC-IB) pilot assignment scheme to alleviate pilot contamination. Considering the local characteristics of channel estimates and statistics, we propose a location-aided distributed uplink combining scheme based on a novel proposed metric representing inter-user interference to balance the relationship among the spectral efficiency (SE), user equipment (UE) fairness and complexity, in which the normalized local partial minimum mean-squared error (LP-MMSE) combining is adopted for some APs, while the normalized maximum ratio (MR) combining is adopted for the remaining APs. A new closed-form SE expression using the normalized MR combining is derived and a novel metric to indicate the UE fairness is also proposed. Moreover, the max-min fairness (MMF) power control algorithm is utilized to further ensure uniformly good service to the UEs. Simulation results demonstrate that the channel estimation accuracy of our proposed IC-IB pilot assignment scheme outperforms that of the conventional pilot assignment schemes. Furthermore, although the proposed location-aided uplink combining scheme is not always the best in terms of the per-UE SE, it can provide the more fairness among UEs and can achieve a good trade-off between the average SE and computational complexity.


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1552
Author(s):  
Tongzhou Han ◽  
Danfeng Zhao

In centralized massive multiple-input multiple-output (MIMO) systems, the channel hardening phenomenon can occur, in which the channel behaves as almost fully deterministic as the number of antennas increases. Nevertheless, in a cell-free massive MIMO system, the channel is less deterministic. In this paper, we propose using instantaneous channel state information (CSI) instead of statistical CSI to obtain the power control coefficient in cell-free massive MIMO. Access points (APs) and user equipment (UE) have sufficient time to obtain instantaneous CSI in a slowly time-varying channel environment. We derive the achievable downlink rate under instantaneous CSI for frequency division duplex (FDD) cell-free massive MIMO systems and apply the results to the power control coefficients. For FDD systems, quantized channel coefficients are proposed to reduce feedback overhead. The simulation results show that the spectral efficiency performance when using instantaneous CSI is approximately three times higher than that achieved using statistical CSI.


Author(s):  
Adeeb Salh ◽  
Lukman Audah ◽  
Nor Shahida M. Shah ◽  
Shipun A. Hamzah

<span>Massive multi-input–multi-output (MIMO) systems are crucial to maximizing energy efficiency (EE) and battery-saving technology. Achieving EE without sacrificing the quality of service (QoS) is increasingly important for mobile devices. We first derive the data rate through zero forcing (ZF) and three linear precodings: maximum ratio transmission (MRT), zero forcing (ZF), and minimum mean square error (MMSE). Performance EE can be achieved when all available antennas are used and when taking account of the consumption circuit power ignored because of high transmit power. The aim of this work is to demonstrate how to obtain maximum EE while minimizing power consumed, which achieves a high data rate by deriving the optimal number of antennas in the downlink massive MIMO system. This system includes not only the transmitted power but also the fundamental operation circuit power at the transmitter signal. Maximized EE depends on the optimal number of antennas and determines the number of active users that should be scheduled in each cell. We conclude that the linear precoding technique MMSE achieves the maximum EE more than ZF and MRT</span><em></em><span>because the MMSE is able to make the massive MIMO system less sensitive to SNR at an increased number of antennas</span><span>.</span>


Sign in / Sign up

Export Citation Format

Share Document