scholarly journals Influence of Heat Processing on DNA Degradation and PCR-Based Detection of Wild-Type and Transgenic Maize

2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Kakha Bitskinashvili ◽  
Inga Gabriadze ◽  
Tamara Kutateladze ◽  
Boris Vishnepolsky ◽  
David Mikeladze ◽  
...  

Reliable detection of genetically modified (GM) maize is significant for food authenticity, labelling, quality, and safety assessment. This study aims to evaluate the factors influencing degradation and polymerase chain reaction (PCR) amplification of DNA from the wild type and transgenic maize (events Bt-176 and MON810) during thermal treatment at 100°C and 121°C. A new PCR method was developed targeting the Cry1Ab gene to detect insect-resistant GM plants. The yield of genomic DNAs extracted by the DNeasy plant mini kit dramatically decreased while DNAs obtained by cetyltrimethyl ammonium bromide- (CTAB-) based method did not show any visible changes in the yield by the time of processing. Treatment at 100°C did not significantly affect either genomic DNAs or amplicons. Heating at 121°C induced time-dependent degradation of genomic DNAs and exogenous Cry1Ab gene; however, it did not have any considerable influence on the exogenous 141 bp amplicons or endogenous amplicons in the range of 102 bp to 226 bp with the exception of the event MON810 extracted by the DNeasy plant mini kit. More yield was observed at 226 bp than 140 bp fragment of the invertase gene. The 141 bp fragment of the transgenic CaMV 35S promoter exhibited the highest thermal stability of all the examined amplicons. Analysis of foodstuffs demonstrated 102 bp amplicons specific for the zein gene as the effective marker to detect maize in the processed foods. The obtained results demonstrate that PCR-based detection of the wild type and transgenic maize is dependent on the combination of different parameters of crucial factors such as temperature and duration of exposure, transgenic event, DNA extraction method, DNA marker, and size and location of amplicons.

2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Kyoko Yoshizaki ◽  
Akihiro Hirata ◽  
Hiroyuki Matsushita ◽  
Naohito Nishii ◽  
Mifumi Kawabe ◽  
...  

Abstract Background The prevalence of gastrointestinal (GI) neoplastic polyps in Jack Russell terriers (JRTs) has increased in Japan since the late 2000s. Recently, we demonstrated that JRTs with GI polyps harbor identical germline variant in the APC gene (c.[462_463delinsTT]) in the heterozygous state. Thus, this disease is an autosomal dominant hereditary disorder. Although the affected JRTs have distinct features, such as the development of multiple GI polyps and an early age of disease onset, genetic testing is indispensable for a definitive diagnosis. Here, polymerase chain reaction (PCR)-based assays capable of detecting germline APC variant were designed and validated using synthetic wild-type and mutant DNAs and genomic DNAs from carrier and non-carrier dogs. Result First, the PCR-restriction fragment length polymorphism (PCR-RFLP) assay was developed by taking advantage of the germline APC variant creating a new restriction site for MseI. In the PCR-RFLP assay, the 156-bp region containing the variant site was amplified by PCR and subsequently digested with MseI, yielding diagnostic 51 and 58 bp fragments from the mutant allele and allowing determination of the APC genotypes. It was possible to determine the genotypes using genomic DNA extracted from the peripheral blood, buccal swab, or formalin-fixed paraffin-embedded tissue. Next, a TaqMan duplex real-time PCR assay was developed, where a 78-bp region flanking the variant was amplified in the presence of wild-type allele- and mutant allele-specific fluorescent probes. Using blood-derived DNA, altogether 40 cycles of PCR amplification determined the APC genotypes of all examined samples by measuring the fluorescence intensities. Importantly, false-positive and false-negative errors were never detected in both assays. Conclusion In this study, we developed highly reliable genetic tests for hereditary GI polyposis in JRTs, providing accurate assessment of the presence of the causative germline APC variant. The genotyping assays could contribute to the diagnosis and prevention of hereditary GI polyposis in dogs.


2016 ◽  
Vol 30 (32n33) ◽  
pp. 1650400 ◽  
Author(s):  
Yuanyuan Han ◽  
Dan Wang ◽  
Danyang Liang ◽  
Shiqi Wang ◽  
Guoxin Lu ◽  
...  

Scheelite (CaWO4)-type microphosphors were synthesized by the precipitation method assisted with cetyltrimethyl ammonium bromide (CTAB). All compounds crystallized in the tetragonal structure with space group [Formula: see text] (No. 88). FE-SEM micrographs illustrate the spherical-like morphologies and rough surface. PL spectra indicate the broad emission peak maximum at 613 nm under UV excitation. Luminescence decay curves monitored by [Formula: see text] transition ([Formula: see text] nm) of Eu[Formula: see text] in doped CaWO4 are presented, the curves exhibit a single-exponential feature and the lifetime for doped CaWO4 is 0.61 ms.


2021 ◽  
Vol 25 (11) ◽  
pp. 38-40
Author(s):  
S.R. Jagtap ◽  
R.P. Yadav ◽  
B.B. Bahule ◽  
D.J. Chaudhari

In this study, we are reporting a solvent free Biginelli reaction using aromatic aldehydes, ethyl acetoacetate and urea in presence of cetyl tri-methyl ammonium bromide as a catalyst. The reaction is green and environmentally benign. The yield of three component condensation reaction is excellent. The products were screened for anti-bacterial and anti-fungal activity. The method is simple and convenient. The catalyst is novel and easily available, non-expensive and nontoxic.


Author(s):  
Navami Dayal ◽  
Vaishnavi Murugan ◽  
Meghal Shah ◽  
Suparna Deepak

The Food Safety and Standards Authority of India (FSSAI) have not approved any genetically modified (GM) food products to be manufactured, distributed, sold/or imported in the country. Many countries across the globe are legally approved to cultivate GM crops like soybean, maize, canola, cotton seeds, etc. Many people living in urban India nowadays prefer to purchase imported food products. As a result, an increasing number of food items (without GM labels) are being imported in India. Nevertheless, these products are also easily available for buyers online. Thus, it is important to understand whether these imported food items available in the Indian market are GMO-free. The objective of this study is to check the availability of GM food products in raw and processed forms in the Indian local market through the use of conventional Polymerase Chain Reaction (PCR). The study is designed to screen for the presence of regulatory genes (35S promoter and NOS terminator) which are the most common sequences found in transgenic food products. Using the cetyl trimethyl ammonium bromide (CTAB) method, DNA was extracted from 12 food samples commercially available in the Indian market (locally and online) followed by PCR to detect the presence of GM DNA using HIMEDIA’S MBPCR055 GMO detection kit. Overall, 16.66% of the total samples were tested positive for GM DNA. Of the imported food items, 33.33% were tested positive. Products that were manufactured in the US and Netherlands were tested positive for GMOs. Their main ingredients were also soy and corn. Samples manufactured in India were GMO negative.


Development ◽  
2002 ◽  
Vol 129 (20) ◽  
pp. 4707-4717 ◽  
Author(s):  
Sandra Kuusk ◽  
Joel J. Sohlberg ◽  
Jeff A. Long ◽  
Ingela Fridborg ◽  
Eva Sundberg

Gynoecium ontogenesis in Arabidopsis is accomplished by the co-ordinated activity of genes that control patterning and the regional differentiation of tissues, and ultimately results in the formation of a basal ovary, a short style and an apical stigma. A transposon insertion in the STYLISH1 (STY1) gene results in gynoecia with aberrant style morphology, while an insertion mutation in the closely related STYLISH2 (STY2) gene has no visible effect on gynoecium development. However, sty1-1 sty2-1 double mutant plants exhibit an enhanced sty1-1 mutant phenotype and are characterized by a further reduction in the amount of stylar and stigmatic tissues and decreased proliferation of stylar xylem. These data imply that STY1 and STY2 are partially redundant and that both genes promote style and stigma formation and influence vascular development during Arabidopsis gynoecium development. Consistently, STY1 and STY2 are expressed in the apical parts of the developing gynoecium and ectopic expression of either STY1 or STY2 driven by the CaMV 35S promoter is sufficient to transform valve cells into style cells. STY1::GUS and STY2::GUS activity is detected in many other organs as well as the gynoecium, suggesting that STY1 and STY2 may have additional functions. This is supported by the sty1-1 sty2-1 double mutants producing rosette and cauline leaves with a higher degree of serration than wild-type leaves. STY1 and STY2 are members of a small gene family, and encode proteins with a RING finger-like motif. Double mutant analyses indicate that STY1 genetically interacts with SPATULA and possibly also with CRABS CLAW.


2017 ◽  
Vol 4 (1) ◽  
pp. 1-5
Author(s):  
László Fülöp ◽  
Katalin Götzer ◽  
Erzsébet Csernák ◽  
Danyil Szergejevics Kuznyecov ◽  
Erika Tóth

The V600E mutation is the most common (~90%) activating mutation of the BRAF gene. BRAF mutations have been frequently investigated in melanoma, colorectal cancer and papillary thyroid carcinoma. The importance of the detection of BRAF mutations has been rising by the routine use of Braf inhibitor therapy. We evaluated the usefulness of the BRAF V600E mutation-specific monoclonal antibody (VE1) in metastatic melanoma patients. To confirm the results of immunohistochemistry (IHC), we used COBAS 4800 BRAF V600 mutation test and PCR amplification followed by Sanger sequencing.36 of 105 patients have wild-type BRAF gene, 64 have V600E mutation and 5 of 105 have V600K mutation. Predicting the mutation only by IHC using VE1 antibody, all 58 positively scored specimen were V600E mutant. The V600K, the wild-type patients and 7 patients from the V600E mutant group scored as negative. Thus the specificity is 100% and the positive predictive value is 1 of the IHC method. After processing our data we could establish a cheaper diagnostic algorithm for rapid detection ofBRAF mutation.


Sign in / Sign up

Export Citation Format

Share Document