scholarly journals Study on Transmutation of Minor Actinides as Burnable Poison in VVER-1000 Fuel Assembly

2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Vinh Thanh Tran ◽  
Hoai-Nam Tran ◽  
Huu Tiep Nguyen ◽  
Van-Khanh Hoang ◽  
Pham Nhu Viet Ha

Thermal reactors have been considered as interim solution for transmutation of minor actinides recycled from spent nuclear fuel. Various studies have been performed in recent decades to realize this possibility. This paper presents the neutronic feasibility study on transmutation of minor actinides as burnable poison in the VVER-1000 LEU (low enriched uranium) fuel assembly. The VVER-1000 LEU fuel assembly was modeled using the SRAC code system, and the SRAC calculation model was verified against the MCNP6 calculations and the available published benchmark data. Two models of minor actinide loading in the LEU fuel assembly have been investigated: homogeneous mixing in the UGD (Uranium-Gadolinium) pins and coating a thin layer to the UGD pins. The consequent negative reactivity insertion by minor actinides was compensated by reducing the gadolinium content and boron concentration. The reactivity of the LEU assembly versus burnup and the transmutation of minor actinide nuclides were examined in comparison with the reference case. The results demonstrate that transmutation of minor actinides as burnable poison in the VVER-1000 reactor is feasible as minor actinides could partially replace the functions of gadolinium and boric acid for excess reactivity control.

2021 ◽  
Vol 9 (4) ◽  
pp. 16-26
Author(s):  
Vinh Thanh Tran ◽  
Thanh Mai Vu ◽  
Van Khanh Hoang ◽  
Viet Ha Pham Nhu

The feasibility of transmutation of minor actinides recycled from the spent nuclear fuel in the VVER-1000 LEU (low enriched uranium) fuel assembly as burnable poison was examined in our previous study. However, only the minor actinide vector of the VVER-440 spent fuel was considered. In this paper, various vectors of minor actinides recycled from the spent fuel of VVER-440, PWR-1000, and VVER-1000 reactors were therefore employed in the analysis in order to investigate the minor actinide transmutation efficiency of the VVER-1000 fuel assembly with different minor actinide compositions. The comparative analysis was conducted for the two models of minor actinide loading in the LEU fuel assembly: homogeneous mixing in the UGD (Uranium-Gadolinium) pins and coating a thin layer to the UGD pins. The parameters to be analysed and compared include the reactivity of the LEU fuel assembly versus burnup and the transmutation of minor actinide nuclides when loading different minor actinide vectors into the LEU fuel assembly.


Author(s):  
Carl E. Baily ◽  
Karen A. Moore ◽  
Collin J. Knight ◽  
Peter B. Wells ◽  
Paul J. Petersen ◽  
...  

Unirradiated sodium bonded metal fuel and casting scrap material containing highly enriched uranium (HEU) is stored at the Materials and Fuels Complex (MFC) on the Idaho National Laboratory (INL). This material, which includes intact fuel assemblies and elements from the Fast Flux Test Facility (FFTF) and Experimental Breeder Reactor-II (EBR-II) reactors, as well as scrap material from the casting of these fuels, has no current use under the terminated reactor programs for both facilities. The Department of Energy (DOE), under the Sodium-Bonded Spent Nuclear Fuel Treatment Record of Decision (ROD), has determined that this material could be prepared and transferred to an off-site facility for processing and eventual fabrication of fuel for commercial nuclear reactors. A plan is being developed to prepare, package, and transfer this material to the DOE HEU Disposition Program Office (HDPO), located at the Y-12 National Security Complex in Oak Ridge, Tennessee. Disposition of the sodium bonded material will require separating the elemental sodium from the metallic uranium fuel. A sodium distillation process known as MEDE (Melt-Drain-Evaporate), will be used for the separation process. The casting scrap material needs to be sorted to remove any foreign material or fines that are not acceptable to the HDPO program. Once all elements have been cut and loaded into baskets, they are then loaded into an evaporation chamber as the first step in the MEDE process. The chamber will be sealed and the pressure reduced to approximately 200 mtorr. The chamber will then be heated as high as 650 °C, causing the sodium to melt and then vaporize. The vapor phase sodium will be driven into an outlet line where it is condensed and drained into a receiver vessel. Once the evaporation operation is complete, the system is de-energized and returned to atmospheric pressure. This paper describes the MEDE process as well as a general overview of the furnace systems, as necessary, to complete the MEDE process.


Author(s):  
Yunhuang Zhang ◽  
Jean C. Ragusa

Several new fuel assembly designs for multi-recycling Transuranics from spent nuclear fuel are proposed and investigated. Among these are (1) Mixed Oxide Fuel with Enriched Uranium (MOX-EU), in which Plutonium oxide and U-235 enriched Uranium oxide are mixed (2) MOX fuel with Americium coating, in which a thin layer of Americium is applied to the outer surface of the MOX fuel pellet, and (3) an heterogeneous fuel assembly consists of Inert-Matrix Fuel (IMF) pins at the periphery and UOX pins in the inner zone. All these designs are compatible with standard PWR utilizing 17×17 fuel assemblies. In-reactor fuel depletion simulation and long-term isotopic decay calculation are carried out using DRAGON[1] and ORIGEN[2], separately. Transuranics mass balance and long-term radiotoxicity analyses are implemented and the results are normalized to per 1TWh-electricity produced.


2018 ◽  
Vol 3 (3) ◽  
pp. 460
Author(s):  
E.I. Lukyan ◽  
G.L. Khorasanov ◽  
А.М. Terekhova

The neutron-physical characteristics of curium and americium in spent nuclear fuel (SNF) of the BN-600 reactor were considered in the work. With the help of the Serpent software complex, several models of the BN-600 reactor fuel assembly with different enrichment of fuel by U-235 were built. In BN-600, with the probability of dividing Am-241 by no more than 15%, incomplete burning of minor actinides (MA) occurs and even the accumulation of Cm-244, which is dangerous for storage.


2014 ◽  
Vol 1070-1072 ◽  
pp. 357-360
Author(s):  
Dao Xiang Shen ◽  
Yao Li Zhang ◽  
Qi Xun Guo

A travelling wave reactor (TWR) is an advanced nuclear reactor which is capable of running for decades given only depleted uranium fuel, it is considered one of the most promising solutions for nonproliferation. A preliminary core design was proposed in this paper. The calculation was performed by Monte Carlo method. The burning mechanism of the reactor core design was studied. Optimization on the ignition zone was performed to reduce the amount of enriched uranium initially deployed. The results showed that the preliminary core design was feasible. The optimization analysis showed that the amount of enriched uranium could be reduced under rational design.


Sign in / Sign up

Export Citation Format

Share Document