scholarly journals Explosion-Induced Stress Wave Propagation in Interacting Fault System: Numerical Modeling and Implications for Chaoyang Coal Mine

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaojun Feng ◽  
Qiming Zhang ◽  
Muhammad Ali

Exploring the propagation of stress waves in rocks with preexisting discontinuities is of great importance to reveal rock and geological engineering problems, particularly dynamic disasters like earthquakes and rockbursts in underground coal mining. In this paper, six 3D models established with COMSOL Multiphysics are employed to explore the influence of two preexisting faults with different orientations on the propagation process of explosion-induced stress waves and the reflection effect. Considering the propagation process of stress waves, the interactive effect between two different size faults is discussed. The results show that the dip angles of the preexisting fault and the differences of the elastic modulus, density, and Poisson’s ratio between faults and rocks have great influence on the distribution of stresses and strain-energy density. Immediately after the stress wave induced by blasting arrived at preexisting fault A, a relatively high concentration of the strain-energy density was observed at the last wave before passing through fault A. The presence of faults leads to the reflection of most of the blast energy. When the stress wave propagates across fault A, the strain energy stored in the stress wave becomes attenuated; thus, most strain energy was absorbed by the fault’s domain. Finally, the modeling results were implicated in Chaoyang Coal Mine to account for the distribution of the observed seismic events. This study has guiding significance for the attenuation law of stress waves passing through joint/fissure zones in geological engineering, earthquake engineering, and underground mining engineering.

2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Wenyue Qi ◽  
Jixiong Zhang ◽  
Nan Zhou ◽  
Zhongya Wu ◽  
Jun Zhang

Deep coal mining is unavoidable, and the complex mining environments and the increasing dangers associated with ultrahigh energy accumulation and release from mining disturbances renders it extremely difficult to maintain a safe and stable stope. Solid backfilling technology directly uses coal gangue and other solid wastes in the mining area to fill the gob after mining. Support from the backfill body can inhibit the movement of overlying rock strata and significantly alleviate the influence of mining. In this study, the correlations between the deformation of gangue filling material and the characteristics of energy dissipation were examined under lateral uniaxial compression. The strain energy density distributions of backfilling and caving mining methods were simulated using numerical modeling. The results showed that the strain energy density distribution of backfilling mining was less concentrated, and its peak value was lower than that of caving mining by 51.0%, indicating that backfilling could effectively reduce the amount of energy released from mining rocks. The dense backfill mining area of the No. 9301 face in Tangkou Coal Mine was used as a case study. Measures for controlling the backfill body compaction for reducing the amount of energy released from mining rocks were proposed. These measures include optimizing the support structure and filling material formula, controlling the preroof subsidence, and ensuring an appropriate number of tamping strokes. The monitoring results of the backfilling quality, surface subsidence, and microseismic energy of No. 9301 working face in Tangkou Coal Mine showed that when the backfill body filling ratio control value was 82.28%, the total number of microseisms and the amount of energy released from the mining working face were significantly lower compared to those of the caving method. This study demonstrated that the backfill body could effectively reduce the amount of energy released from mining rocks, thereby realizing management of mine earthquake and sustainable deep coal mining.


2020 ◽  
Vol 28 ◽  
pp. 734-742
Author(s):  
Pietro Foti ◽  
Seyed Mohammad Javad Razavi ◽  
Liviu Marsavina ◽  
Filippo Berto

2021 ◽  
Vol 230 ◽  
pp. 111716
Author(s):  
Pietro Foti ◽  
Seyed Mohammad Javad Razavi ◽  
Majid Reza Ayatollahi ◽  
Liviu Marsavina ◽  
Filippo Berto

Author(s):  
Mircea Bîrsan

AbstractIn this paper, we present a general method to derive the explicit constitutive relations for isotropic elastic 6-parameter shells made from a Cosserat material. The dimensional reduction procedure extends the methods of the classical shell theory to the case of Cosserat shells. Starting from the three-dimensional Cosserat parent model, we perform the integration over the thickness and obtain a consistent shell model of order $$ O(h^5) $$ O ( h 5 ) with respect to the shell thickness h. We derive the explicit form of the strain energy density for 6-parameter (Cosserat) shells, in which the constitutive coefficients are expressed in terms of the three-dimensional elasticity constants and depend on the initial curvature of the shell. The obtained form of the shell strain energy density is compared with other previous variants from the literature, and the advantages of our constitutive model are discussed.


2014 ◽  
Vol 1679 ◽  
Author(s):  
O.G. Súchil ◽  
G. Abadal ◽  
F. Torres

ABSTRACTSelf-powered microsystems as an alternative to standard systems powered by electrochemical batteries are taking a growing interest. In this work, we propose a different method to store the energy harvested from the ambient which is performed in the mechanical domain. Our mechanical storage concept is based on a spring which is loaded by the force associated to the energy source to be harvested [1]. The approach is based on pressing an array of fine wires (fws) grown vertically on a substrate surface. For the fine wires based battery, we have chosen ZnO fine wires due the fact that they could be grown using a simple and cheap process named hydrothermal method [2]. We have reported previous experiments changing temperature and initial pH of the solution in order to determine the best growth [3]. From new experiments done varying the compounds concentration the best results of fine wires were obtained. To characterize these fine wires we have considered that the maximum load we can apply to the system is limited by the linear buckling of the fine wires. From the best results we obtained a critical strain of εc = 3.72 % and a strain energy density of U = 11.26 MJ/m3, for a pinned-fixed configuration [4].


2010 ◽  
Vol 452-453 ◽  
pp. 441-444 ◽  
Author(s):  
Tomáš Profant ◽  
Jan Klusák ◽  
Michal Kotoul

The bi-material notch composed of two orthotropic parts is considered. The radial and tangential stresses and strain energy density is expressed using the Stroh-Eshelby-Lekhnitskii formalism for the plane elasticity. The potential direction of the crack initiation is determined from the maximum mean value of the tangential stresses and local minimum of the mean value of the generalized strain energy density factor in both materials. Matched asymptotic procedure is used to derive the change of potential energy for the debonding crack and the crack initiated in the determined direction.


Author(s):  
Sergio Cicero ◽  
Francisco Ibáñez ◽  
Isabela Procopio ◽  
Virginia Madrazo

This paper presents the application of the Strain Energy Density (SED) criterion to the estimation of fracture loads on structural steel S355J2 operating at lower shelf temperatures (−196°C) and containing U-shaped notches. 24 fracture tests were performed on this material, combining 6 different notch radii: 0 mm (crack-like defect), 0.15 mm, 0.25 mm, 0.50 mm, 1.0 mm and 2.0 mm. The results obtained in cracked specimens (0 mm notch radius) were used to determine the material fracture toughness, which is an input parameter in the SED criterion, whereas the notched specimens were used to demonstrate the capacity and the limitations of the SED criterion to provide fracture load estimations in the analyzed conditions.


Sign in / Sign up

Export Citation Format

Share Document