scholarly journals Research on the Resonance Characteristics of Rock under Harmonic Excitation

2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Siqi Li ◽  
Shenglei Tian ◽  
Wei Li ◽  
Tie Yan ◽  
Fuqing Bi

In order to study the resonance characteristics of rock under harmonic excitation, two vibration models have been presented to estimate the natural frequency of rock encountered during the drilling. The first one is a developed single-DOF model which considers the properties and dimensions of the rock. The second one is a multi-DOF model based on the principle of least action. Subsequently, the modal characteristics, as well as the influence of excitation frequency, the mechanical properties, and dimensions of the rock on its resonance frequency, are analyzed by using FEM. Finally, the ultrasonic test on artificial sandstones and materials of drill tools are carried out indoor, and the FFT transform method is adopted to obtain their resonance frequencies. Based on the analysis undertaken, it can be concluded that the natural frequency of the rock increases with the change of vibration mode. For the same kind of rock, the resonance frequency is inversely proportional to mass, while for the different kinds of rocks, the mechanical parameters, such as density, elastic modulus, and Poisson’s ratio, determine the resonance frequency of the rock together. Besides, the shape of the rock is also one of the main factors affecting its resonance frequency. At last, the theoretical research results are further verified by ultrasonic tests.

2015 ◽  
Vol 39 (2) ◽  
pp. 281-291 ◽  
Author(s):  
Changgen Bu ◽  
Long Sun ◽  
Yuanbiao Hu ◽  
Bairu Xia

The undisturbed sampling of the overburden soil is attracting increased attention due to the rapid increases in the construction of large-scale domestic foundations and environmental protection engineering. To date, systematic theoretical research on sonic drilling technology has rarely been published. In the present paper, the vibration response induced by sonic harmonic excitation is studied by modeling the flexible drill string of a sonic drill; its dynamic theory and design methodology have been developed, which reveal effects of the excitation frequency, the structural parameters on vibration response of the drill string. The study of sonic drill string vibration is beneficial for improving the drilling efficiency and reducing the damage.


Author(s):  
David D. Nolte

Galileo’s parabolic trajectory launched a new approach to physics that was taken up by a new generation of scientists like Isaac Newton, Robert Hooke and Edmund Halley. The English Newtonian tradition was adopted by ambitious French iconoclasts who championed Newton over their own Descartes. Chief among these was Pierre Maupertuis, whose principle of least action was developed by Leonhard Euler and Joseph Lagrange into a rigorous new science of dynamics. Along the way, Maupertuis became embroiled in a famous dispute that entangled the King of Prussia as well as the volatile Voltaire who was mourning the death of his mistress Emilie du Chatelet, the lone female French physicist of the eighteenth century.


Author(s):  
Jerzy Warminski ◽  
Lukasz Kloda ◽  
Jaroslaw Latalski ◽  
Andrzej Mitura ◽  
Marcin Kowalczuk

AbstractNonlinear dynamics of a rotating flexible slender beam with embedded active elements is studied in the paper. Mathematical model of the structure considers possible moderate oscillations thus the motion is governed by the extended Euler–Bernoulli model that incorporates a nonlinear curvature and coupled transversal–longitudinal deformations. The Hamilton’s principle of least action is applied to derive a system of nonlinear coupled partial differential equations (PDEs) of motion. The embedded active elements are used to control or reduce beam oscillations for various dynamical conditions and rotational speed range. The control inputs generated by active elements are represented in boundary conditions as non-homogenous terms. Classical linear proportional (P) control and nonlinear cubic (C) control as well as mixed ($$P-C$$ P - C ) control strategies with time delay are analyzed for vibration reduction. Dynamics of the complete system with time delay is determined analytically solving directly the PDEs by the multiple timescale method. Natural and forced vibrations around the first and the second mode resonances demonstrating hardening and softening phenomena are studied. An impact of time delay linear and nonlinear control methods on vibration reduction for different angular speeds is presented.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Soon Ho Kim ◽  
Jong Won Kim ◽  
Hyun Chae Chung ◽  
MooYoung Choi

AbstractThe principle of least effort has been widely used to explain phenomena related to human behavior ranging from topics in language to those in social systems. It has precedence in the principle of least action from the Lagrangian formulation of classical mechanics. In this study, we present a model for interceptive human walking based on the least action principle. Taking inspiration from Lagrangian mechanics, a Lagrangian is defined as effort minus security, with two different specific mathematical forms. The resulting Euler–Lagrange equations are then solved to obtain the equations of motion. The model is validated using experimental data from a virtual reality crossing simulation with human participants. We thus conclude that the least action principle provides a useful tool in the study of interceptive walking.


2017 ◽  
Vol 17 (6) ◽  
pp. 925-937 ◽  
Author(s):  
Andrej Gosar

Abstract. The town of Idrija is located in an area with an increased seismic hazard in W Slovenia and is partly built on alluvial sediments or artificial mining and smelting deposits which can amplify seismic ground motion. There is a need to prepare a comprehensive seismic microzonation in the near future to support seismic hazard and risk assessment. To study the applicability of the microtremor horizontal-to-vertical spectral ratio (HVSR) method for this purpose, 70 free-field microtremor measurements were performed in a town area of 0.8 km2 with 50–200 m spacing between the points. The HVSR analysis has shown that it is possible to derive the sediments' resonance frequency at 48 points. With the remaining one third of the measurements, nearly flat HVSR curves were obtained, indicating a small or negligible impedance contrast with the seismological bedrock. The isofrequency (a range of 2.5–19.5 Hz) and the HVSR peak amplitude (a range of 3–6, with a few larger values) maps were prepared using the natural neighbor interpolation algorithm and compared with the geological map and the map of artificial deposits. Surprisingly no clear correlation was found between the distribution of resonance frequencies or peak amplitudes and the known extent of the supposed soft sediments or deposits. This can be explained by relatively well-compacted and rather stiff deposits and the complex geometry of sedimentary bodies. However, at several individual locations it was possible to correlate the shape and amplitude of the HVSR curve with the known geological structure and prominent site effects were established in different places. In given conditions (very limited free space and a high level of noise) it would be difficult to perform an active seismic refraction or MASW measurements to investigate the S-wave velocity profiles and the thickness of sediments in detail, which would be representative enough for microzonation purposes. The importance of the microtremor method is therefore even greater, because it enables a direct estimation of the resonance frequency without knowing the internal structure and physical properties of the shallow subsurface. The results of this study can be directly used in analyses of the possible occurrence of soil–structure resonance of individual buildings, including important cultural heritage mining and other structures protected by UNESCO. Another application of the derived free-field isofrequency map is to support soil classification according to the recent trends in building codes and to calibrate Vs profiles obtained from the microtremor array or geophysical measurements.


2000 ◽  
Vol 142 (1-4) ◽  
pp. 235-243 ◽  
Author(s):  
B. Tabarrok ◽  
W. L. Cleghorn

Author(s):  
Zhongxian Liu ◽  
Jiaqiao Liu ◽  
Sibo Meng ◽  
Xiaojian Sun

Summary An indirect boundary element method (IBEM) is developed to model the two-dimensional (2D) diffraction of seismic waves by a fluid-filled crack in a fluid-saturated poroelastic half-space, using Green's functions computed considering the distributed loads, flow, and fluid characteristics. The influence of the fluid-filled crack on the diffraction characteristics is investigated by analyzing key parameters, such as the excitation frequency, incident angle, crack width and depth, and medium porosity. The results for the fluid-filled crack model are compared to those for the fluid-free crack model under the same conditions. The numerical results demonstrate that the fluid-filled crack has a significant amplification effect on the surface displacements, and that the effect of the depth of the fluid-filled crack is more complex compared to the influence of other parameters. The resonance diffraction generates an amplification effect in the case of normally incident P waves. Furthermore, the horizontal and vertical displacement amplitudes reach 4.2 and 14.1, respectively. In the corresponding case of the fluid-free crack, the vertical displacement amplitude is only equal to 4.1, indicating the amplification effect of the fluid in the crack. Conversely, for normally incident SV waves at certain resonance frequencies, the displacement amplitudes above a fluid-filled crack may be lower than the displacement amplitudes observed in the corresponding case of a fluid-free crack.


2019 ◽  
Author(s):  
Hedyeh Rezaei ◽  
Ad Aertsen ◽  
Arvind Kumar ◽  
Alireza Valizadeh

AbstractTransient oscillations in the network activity upon sensory stimulation have been reported in different sensory areas. These evoked oscillations are the generic response of networks of excitatory and inhibitory neurons (EI-networks) to a transient external input. Recently, it has been shown that this resonance property of EI-networks can be exploited for communication in modular neuronal networks by enabling the transmission of sequences of synchronous spike volleys (‘pulse packets’), despite the sparse and weak connectivity between the modules. The condition for successful transmission is that the pulse packet (PP) intervals match the period of the modules’ resonance frequency. Hence, the mechanism was termed communication through resonance (CTR). This mechanism has three sever constraints, though. First, it needs periodic trains of PPs, whereas single PPs fail to propagate. Second, the inter-PP interval needs to match the network resonance. Third, transmission is very slow, because in each module, the network resonance needs to build-up over multiple oscillation cycles. Here, we show that, by adding appropriate feedback connections to the network, the CTR mechanism can be improved and the aforementioned constraints relaxed. Specifically, we show that adding feedback connections between two upstream modules, called the resonance pair, in an otherwise feedforward modular network can support successful propagation of a single PP throughout the entire network. The key condition for successful transmission is that the sum of the forward and backward delays in the resonance pair matches the resonance frequency of the network modules. The transmission is much faster, by more than a factor of two, than in the original CTR mechanism. Moreover, it distinctly lowers the threshold for successful communication by synchronous spiking in modular networks of weakly coupled networks. Thus, our results suggest a new functional role of bidirectional connectivity for the communication in cortical area networks.Author summaryThe cortex is organized as a modular system, with the modules (cortical areas) communicating via weak long-range connections. It has been suggested that the intrinsic resonance properties of population activities in these areas might contribute to enabling successful communication. A module’s intrinsic resonance appears in the damped oscillatory response to an incoming spike volley, enabling successful communication during the peaks of the oscillation. Such communication can be exploited in feedforward networks, provided the participating networks have similar resonance frequencies. This, however, is not necessarily true for cortical networks. Moreover, the communication is slow, as it takes several oscillation cycles to build up the response in the downstream network. Also, only periodic trains of spikes volleys (and not single volleys) with matching intervals can propagate. Here, we present a novel mechanism that alleviates these shortcomings and enables propagation of synchronous spiking across weakly connected networks with not necessarily identical resonance frequencies. In this framework, an individual spike volley can propagate by local amplification through reverberation in a loop between two successive networks, connected by feedforward and feedback connections: the resonance pair. This overcomes the need for activity build-up in downstream networks, causing the volley to propagate distinctly faster and more reliably.


Sign in / Sign up

Export Citation Format

Share Document