scholarly journals New Gene Markers of Angiogenesis and Blood Vessels Development in Porcine Ovarian Granulosa Cells during Short-Term Primary Culture In Vitro

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Błażej Chermuła ◽  
Maciej Brązert ◽  
Dariusz Iżycki ◽  
Sylwia Ciesiółka ◽  
Wiesława Kranc ◽  
...  

The physiological processes that drive the development of ovarian follicle, as well as the process of oogenesis, are quite well known. Granulosa cells are major players in this occurrence, being the somatic element of the female gamete development. They participate directly in the processes of oogenesis, building the cumulus-oocyte complex surrounding the ovum. In addition to that, they have a further impact on the reproductive processes, being a place of steroid sex hormone synthesis and secretion. It is known that the follicle development creates a major need for angiogenesis and blood vessel development in the ovary. In this study, we use novel molecular approaches to analyze markers of these processes in porcine granulosa cultured primarily in vitro. The cells were recovered from mature sus scrofa specimen after slaughter. They were then subjected to enzymatic digestion and culture primarily for a short term. The RNA was extracted from cultures in specific time periods (0h, 24h, 48h, 96h, and 144h) and analyzed using expression microarrays. The genes that exhibited fold change bigger than |2|, and adjusted p-value lower than 0.05, were considered differentially expressed. From these, we have chosen the members of “angiogenesis,” “blood vessel development,” “blood vessel morphogenesis,” “cardiovascular system development,” and “vasculature development” for further selection. CCL2, FGFR2, SFRP2, PDPN, DCN, CAV1, CHI3L1, ITGB3, FN1, and LOX which are upregulated, as well as CXCL10, NEBL, IHH, TGFBR3, SCUBE1, IGF1, EDNRA, RHOB, PPARD, and SLITRK5 genes whose expression is downregulated through the time of culture, were chosen as the potential markers, as their expression varied the most during the time of culture. The fold changes were further validated with RT-qPCR. The genes were described, with special attention to their possible function in GCs during culture. The results broaden the general knowledge about GC’s in vitro molecular processes and might serve as a point of reference for further in vivo and clinical studies.

2020 ◽  
Vol 8 (1) ◽  
pp. 1-11
Author(s):  
Lisa Moncrieff ◽  
Ievgeniia Kocherova ◽  
Artur Bryja ◽  
Wiesława Kranc ◽  
Joanna Perek ◽  
...  

AbstractThe growth and development of the oocyte is essential for the ovarian follicle. Cumulus cells (CCs) - a population of granulosa cells - exchange metabolites, proteins and oocyte-derived paracrine factors with the oocyte through gap junctions, to contribute to the competency and health of the oocyte. This bi-directional communication of the cumulus-oocyte complex could be better understood through the micro-analysis of a porcine oocyte gene expression before in vitro maturation (IVM) and after. Additionally, the study of the somatic and gamete cells differentiation capability into neuronal lineage would be promising for future stem cell research as granulosa cells are easily accessible waste material from in vitro fertilization (IVF) procedures. Therefore, in this study, the oocytes of 45 pubertal Landrace gilts were isolated and the protein expression of the COCs were analyzed through micro-analysis techniques. Genes belonging to two ontological groups: neuron differentiation and negative regulation of cell differentiation have been identified which have roles in proliferation, migration and differentiation. Twenty identified porcine oocyte genes (VEGFA, BTG2, MCOLN3, EGR2, TGFBR3, GJA1, FST, CTNNA2, RTN4, MDGA1, KIT, RYK, NOTCH2, RORA, SMAD4, ITGB1, SEMA5A, SMARCA1, WWTR1 and APP) were found to be down-regulated after the transition of IVM compared to in vitro. These results could be applied as gene markers for the proliferation, migration and differentiation occurring in the bi-directional communication between the oocyte and CCs.Running title: Differentiation and neurogenesis in oocyte cells


2020 ◽  
Vol 10 (4) ◽  
pp. 490-501
Author(s):  
Mozhgan Jahani ◽  
Davood Rezazadeh ◽  
Parisa Mohammadi ◽  
Amir Abdolmaleki ◽  
Amir Norooznezhad ◽  
...  

Blood vessel development is one of the most prominent steps in regenerative medicine due tothe restoration of blood flow to the ischemic tissues and providing the rapid vascularizationin clinical-sized tissue-engineered grafts. However, currently tissue engineering technique isrestricted because of the inadequate in vitro/in vivo tissue vascularization. Some challenges likeas transportation in large scale, distribution of the nutrients and poor oxygen diffusion limit theprogression of vessels in smaller than clinically relevant dimensions as well in vivo integration.In this regard, the scholars attempted to promote the vascularization process relied on the stemcells (SCs), growth factors as well as exosomes and interactions of biomaterials with all of themto enable the emergence of ideal microenvironment which is needed for treatment of unhealthyorgans or tissue regeneration and formation of new blood vessels. Thus, in the present reviewwe aim to describe these approaches, advances, obstacles and opportunities as well as theirapplication in regeneration of heart as a prominent angiogenesis-dependent organ.


2018 ◽  
Vol 6 (4) ◽  
pp. 186-194 ◽  
Author(s):  
Mariusz J. Nawrocki ◽  
Piotr Celichowski ◽  
Maurycy Jankowski ◽  
Wiesława Kranc ◽  
Artur Bryja ◽  
...  

AbstractThe morphological and biochemical modification of oviductal epithelial cells (OECs) belongs to the group of compound processes responsible for proper oocyte transport and successful fertilization. The cellular interactions between cumulus-oocyte complexes (COCs) and oviductal epithelial cells (OECs) are crucial for this unique mechanism. In the present study we have analyzed angiogenesis and blood vessel development processes at transcript levels. By employing microarrays, four ontological groups associated with these mechanisms have been described. Differentially expressed genes belonging to the “angiogenesis”, “blood circulation”, “blood vessel development” and “blood vessel morphogenesis” GO BP terms were investigated as a potential markers for the creation of new blood vessels in cells under in vitro primary culture conditions.


Author(s):  
Zonghao Tang ◽  
Renfeng Xu ◽  
Zhenghong Zhang ◽  
Congjian Shi ◽  
Yan Zhang ◽  
...  

Owing to the avascular structure of the ovarian follicle, proliferation of granulosa cells (GCs) and development of follicles occur under hypoxia, which is obviously different from the cell survival requirements of most mammalian cells. We hypothesized that autophagy may exert an inhibitory effect on GC apoptosis. To decipher the underlying mechanism, we constructed a rat follicular development model using pregnant mare serum gonadotropin and a cell culture experiment in hypoxic conditions (3% O2). The present results showed that the autophagy level was obviously increased and was accompanied by the concomitant elevation of hypoxia inducible factor (HIF)-1α and BNIP3 (Bcl-2/adenovirus E1B 19kDa-interacting protein 3) in GCs during follicular development. The levels of Bax (Bcl2-associated X) and Bcl-2 (B-cell lymphoma-2) were increased, while the activation of caspase-3 exhibited no obvious changes during follicular development. However, inhibition of HIF-1α attenuated the increase in Bcl-2 and promoted the increase in Bax and cleaved caspase-3. Furthermore, we observed the downregulation of BNIP3 and the decrease in autophagy after treatment with a specific HIF-1α activity inhibitor (echinomycin), indicating that HIF-1α/BNIP3 was involved in autophagy regulation in GCs in vivo. In an in vitro study, we also found that hypoxia did not obviously promote GC apoptosis, while it significantly enhanced the activation of HIF-1α/BNIP3 and the induction of autophagy. Expectedly, this effect could be reversed by 3-methyladenine (3-MA) treatment. Taken together, these findings demonstrated that hypoxia drives the activation of HIF-1α/BNIP3 signaling, which induces an increase in autophagy, protecting GC from apoptosis during follicular development.


2020 ◽  
Author(s):  
Amelia M Webb ◽  
Caitlin R Francis ◽  
Jayson M Webb ◽  
Hayle Kincross ◽  
Keanna M Lundy ◽  
...  

ABSTRACTDespite the absolute requirement of Delta/Notch signaling to activate lateral inhibition during early blood vessel development, many mechanisms remain unclear. Here, we identify EHD2 and EHBP1 as novel regulators of Notch activation in endothelial cells through controlling endocytosis of Delta-like ligand 4 (Dll4). Knockout of EHBP1 and EHD2 in zebrafish produced a significant increase in ectopic sprouts in zebrafish intersomitic vessels during development and a reduction in downstream Notch signaling. In vitro, EHBP1 and EHD2 localized to plasma membrane-bound Dll4 and actin independently of clathrin. Disruption of caveolin endocytosis resulted in EHBP1 and EHD2 failing to organize around Dll4 as well as loss of Dll4 internalization in endothelial cells. Overall, we demonstrate that EHBP1 and EHD2 regulate Dll4 endocytosis by anchoring caveolar endocytic pits to the actin cytoskeleton.


2016 ◽  
Vol 21 (2) ◽  
pp. 103-110 ◽  
Author(s):  
Amanda R. Highet ◽  
Sam Buckberry ◽  
Benjamin T. Mayne ◽  
Sultana M. Khoda ◽  
Tina Bianco-Miotto ◽  
...  

Biology ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1214
Author(s):  
Jakub Kulus ◽  
Magdalena Kulus ◽  
Wiesława Kranc ◽  
Karol Jopek ◽  
Maciej Zdun ◽  
...  

The extracellular matrix (ECM) in granulosa cells is functionally very important, and it is involved in many processes related to ovarian follicle growth and ovulation. The aim of this study was to describe the expression profile of genes within granulosa cells that are associated with extracellular matrix formation, intercellular signaling, and cell–cell fusion. The material for this study was ovaries of sexually mature pigs obtained from a commercial slaughterhouse. Laboratory-derived granulosa cells (GCs) from ovarian follicles were cultured in a primary in vitro culture model. The extracted genetic material (0, 48, 96, and 144 h) were subjected to microarray expression analysis. Among 81 genes, 66 showed increased expression and only 15 showed decreased expression were assigned to 7 gene ontology groups “extracellular matrix binding”, “extracellular matrix structural constituent”, “binding, bridging”, “cadherin binding”, “cell adhesion molecule binding”, “collagen binding” and “cadherin binding involved in cell-cell adhesion”. The 10 genes with the highest expression (POSTN, ITGA2, FN1, LAMB1, ITGB3, CHI3L1, PCOLCE2, CAV1, DCN, COL14A1) and 10 of the most down-regulated (SPP1, IRS1, CNTLN, TMPO, PAICS, ANK2, ADAM23, ABI3BP, DNAJB1, IGF1) were selected for further analysis. The results were validated by RT-qPCR. The current results may serve as preliminary data for further analyses using in vitro granulosa cell cultures in assisted reproduction technologies, studies of pathological processes in the ovary as well as in the use of the stemness potential of GCs.


2013 ◽  
Vol 20 (5) ◽  
pp. 524-535 ◽  
Author(s):  
Dori C. Woods ◽  
Yvonne A. R. White ◽  
Yuichi Niikura ◽  
Sorapop Kiatpongsan ◽  
Ho-Joon Lee ◽  
...  

2012 ◽  
Vol 26 (7) ◽  
pp. 1158-1166 ◽  
Author(s):  
Yorino Sato ◽  
Yuan Cheng ◽  
Kazuhiro Kawamura ◽  
Seido Takae ◽  
Aaron J.W. Hsueh

Abstract C-type natriuretic peptide (CNP) encoded by the NPPC (Natriuretic Peptide Precursor C) gene expressed in ovarian granulosa cells inhibits oocyte maturation by activating the natriuretic peptide receptor (NPR)B (NPRB) in cumulus cells. RT-PCR analyses indicated increased NPPC and NPRB expression during ovarian development and follicle growth, associated with increases in ovarian CNP peptides in mice. In cultured somatic cells from infantile ovaries and granulosa cells from prepubertal animals, treatment with CNP stimulated cGMP production. Also, treatment of cultured preantral follicles with CNP stimulated follicle growth whereas treatment of cultured ovarian explants from infantile mice with CNP, similar to FSH, increased ovarian weight gain that was associated with the development of primary and early secondary follicles to the late secondary stage. Of interest, treatment with FSH increased levels of NPPC, but not NPRB, transcripts in ovarian explants. In vivo studies further indicated that daily injections of infantile mice with CNP for 4 d promoted ovarian growth, allowing successful ovulation induction by gonadotropins. In prepubertal mice, CNP treatment alone also promoted early antral follicle growth to the preovulatory stage, leading to efficient ovulation induction by LH/human chorionic gonadotropin. Mature oocytes retrieved after CNP treatment could be fertilized in vitro and developed into blastocysts, allowing the delivery of viable offspring. Thus, CNP secreted by growing follicles is capable of stimulating preantral and antral follicle growth. In place of FSH, CNP treatment could provide an alternative therapy for female infertility.


Sign in / Sign up

Export Citation Format

Share Document