scholarly journals C-Type Natriuretic Peptide Stimulates Ovarian Follicle Development

2012 ◽  
Vol 26 (7) ◽  
pp. 1158-1166 ◽  
Author(s):  
Yorino Sato ◽  
Yuan Cheng ◽  
Kazuhiro Kawamura ◽  
Seido Takae ◽  
Aaron J.W. Hsueh

Abstract C-type natriuretic peptide (CNP) encoded by the NPPC (Natriuretic Peptide Precursor C) gene expressed in ovarian granulosa cells inhibits oocyte maturation by activating the natriuretic peptide receptor (NPR)B (NPRB) in cumulus cells. RT-PCR analyses indicated increased NPPC and NPRB expression during ovarian development and follicle growth, associated with increases in ovarian CNP peptides in mice. In cultured somatic cells from infantile ovaries and granulosa cells from prepubertal animals, treatment with CNP stimulated cGMP production. Also, treatment of cultured preantral follicles with CNP stimulated follicle growth whereas treatment of cultured ovarian explants from infantile mice with CNP, similar to FSH, increased ovarian weight gain that was associated with the development of primary and early secondary follicles to the late secondary stage. Of interest, treatment with FSH increased levels of NPPC, but not NPRB, transcripts in ovarian explants. In vivo studies further indicated that daily injections of infantile mice with CNP for 4 d promoted ovarian growth, allowing successful ovulation induction by gonadotropins. In prepubertal mice, CNP treatment alone also promoted early antral follicle growth to the preovulatory stage, leading to efficient ovulation induction by LH/human chorionic gonadotropin. Mature oocytes retrieved after CNP treatment could be fertilized in vitro and developed into blastocysts, allowing the delivery of viable offspring. Thus, CNP secreted by growing follicles is capable of stimulating preantral and antral follicle growth. In place of FSH, CNP treatment could provide an alternative therapy for female infertility.

2016 ◽  
Vol 28 (9) ◽  
pp. 1295 ◽  
Author(s):  
Yuanming Xu ◽  
Francesca E. Duncan ◽  
Min Xu ◽  
Teresa K. Woodruff

Screening of pharmaceutical, chemical and environmental compounds for their effects on reproductive health relies on in vivo studies. More robust and efficient methods to assess these effects are needed. Herein we adapted and validated an organotypic in vitro follicle growth (IVFG) assay to determine the impact of compounds on markers of ovarian function. We isolated mammalian follicles and cultured them in the presence of compounds with: (1) known fertotoxicity (i.e. toxicity to the reproductive system; cyclophosphamide and cisplatin); (2) no known fertotoxicity (nalbuphine); and (3) unknown fertotoxicity (Corexit EC 9500 A; CE, Nalco, Chicago, IL, USA). For each compound, we assayed follicle growth, hormone production and the ability of follicle-enclosed oocytes to resume meiosis and produce a mature egg. Cyclophosphamide and cisplatin caused dose-dependent disruption of follicle dynamics, whereas nalbuphine did not. The reproductive toxicity of CE, an oil dispersant used heavily during the 2010 Deepwater Horizon oil spill, has never been examined in a mammalian system. In the present study, CE compromised follicle morphology and functional parameters. Our findings demonstrate that this IVFG assay system can be used to distinguish fertotoxic from non-toxic compounds, providing an in vitro tool to assess the effects of chemical compounds on reproductive function and health.


2020 ◽  
Author(s):  
Ang Li ◽  
Haixia Cao ◽  
Hongxia Li ◽  
Ruijiao Li ◽  
Huaixiu Wang ◽  
...  

Abstract Background Supplementation of c-type natriuretic peptide (CNP) in the culture medium shortly before in vitro maturation (IVM) has been reported to be effective in delaying meiotic resumption of murine oocyte. The present study investigated the effect of CNP supplementation during the whole period of in vitro growth (IVG) on the development of murine secondary ovarian follicles.Methods Late secondary ovarian follicles isolated from ovaries of Kunming mice were cultured in vitro with and without supplementation of CNP. In experiment 1, CNP was supplemented at the early stage and the follicle development was evaluated. In experiment 2 and 3, CNP was supplemented during the whole period of IVG. In experiment 2, follicle development and oocyte maturity were evaluated. In group 3, follicle development and rate of cleaved embryos after in vitro fertilization (IVF) was assessed.Results In control group in all 3 experiments, granulosa cells migrated from within follicle and adhered to the plate at different degrees. The follicles flattened and could not reach antral stage. About 39.8% (39/98) of the oocytes ovulated nakedly. As no antral follicle was obtained, IVF was not performed in control group in experiment 3. In experiment group in all 3 experiments, no migration of guanulosa cells was observed and the follicles grew three-dimensionally. Ovulation of naked oocyte decreased substantially. The rate of antral stage follicle were 45% (18/40) in experiment 1. This parameter was 75.9% (44/58) in experiment 2 and 3 combined. In experiment 2, in preovulatory follicles without ovulation induction, oocytes at germinal vesicle (GV) stage and germinal vesicle breakdown (GVBD) stage were 87.5% (14/16) and 12.5% (2/16), respectively. In preovulatory follicles with ovulation induction, no GV stage oocyte was retrieved, oocytes at GVBD and metaphase II (MII) stage were 50% (8/16), respectively. In experiment 3, among 18 follicles cultured, 12 cumulus-oocyte complexes (COC) ovulated automatically after ovulation induction. Eleven oocytes were fertilized and cleaved. Compared with control groups, the follicle development assessed by naked oocyte ovulation and follicle stage (preantral follicle and antral follicle) in experiment groups were significantly superior (p<0.0001). CNP effectively maintained oocytes’ meiotic arrest and enhanced fertilization competency.Conclusions The supplementation of CNP in culture system of murine late secondary follicle during the whole period of IVG could sustain the 3-dimensional structure of follicle, increase the antral formation rate. As a result, the oocyte’s competency to be fertilized was greatly improved.


Author(s):  
Zonghao Tang ◽  
Renfeng Xu ◽  
Zhenghong Zhang ◽  
Congjian Shi ◽  
Yan Zhang ◽  
...  

Owing to the avascular structure of the ovarian follicle, proliferation of granulosa cells (GCs) and development of follicles occur under hypoxia, which is obviously different from the cell survival requirements of most mammalian cells. We hypothesized that autophagy may exert an inhibitory effect on GC apoptosis. To decipher the underlying mechanism, we constructed a rat follicular development model using pregnant mare serum gonadotropin and a cell culture experiment in hypoxic conditions (3% O2). The present results showed that the autophagy level was obviously increased and was accompanied by the concomitant elevation of hypoxia inducible factor (HIF)-1α and BNIP3 (Bcl-2/adenovirus E1B 19kDa-interacting protein 3) in GCs during follicular development. The levels of Bax (Bcl2-associated X) and Bcl-2 (B-cell lymphoma-2) were increased, while the activation of caspase-3 exhibited no obvious changes during follicular development. However, inhibition of HIF-1α attenuated the increase in Bcl-2 and promoted the increase in Bax and cleaved caspase-3. Furthermore, we observed the downregulation of BNIP3 and the decrease in autophagy after treatment with a specific HIF-1α activity inhibitor (echinomycin), indicating that HIF-1α/BNIP3 was involved in autophagy regulation in GCs in vivo. In an in vitro study, we also found that hypoxia did not obviously promote GC apoptosis, while it significantly enhanced the activation of HIF-1α/BNIP3 and the induction of autophagy. Expectedly, this effect could be reversed by 3-methyladenine (3-MA) treatment. Taken together, these findings demonstrated that hypoxia drives the activation of HIF-1α/BNIP3 signaling, which induces an increase in autophagy, protecting GC from apoptosis during follicular development.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Błażej Chermuła ◽  
Maciej Brązert ◽  
Dariusz Iżycki ◽  
Sylwia Ciesiółka ◽  
Wiesława Kranc ◽  
...  

The physiological processes that drive the development of ovarian follicle, as well as the process of oogenesis, are quite well known. Granulosa cells are major players in this occurrence, being the somatic element of the female gamete development. They participate directly in the processes of oogenesis, building the cumulus-oocyte complex surrounding the ovum. In addition to that, they have a further impact on the reproductive processes, being a place of steroid sex hormone synthesis and secretion. It is known that the follicle development creates a major need for angiogenesis and blood vessel development in the ovary. In this study, we use novel molecular approaches to analyze markers of these processes in porcine granulosa cultured primarily in vitro. The cells were recovered from mature sus scrofa specimen after slaughter. They were then subjected to enzymatic digestion and culture primarily for a short term. The RNA was extracted from cultures in specific time periods (0h, 24h, 48h, 96h, and 144h) and analyzed using expression microarrays. The genes that exhibited fold change bigger than |2|, and adjusted p-value lower than 0.05, were considered differentially expressed. From these, we have chosen the members of “angiogenesis,” “blood vessel development,” “blood vessel morphogenesis,” “cardiovascular system development,” and “vasculature development” for further selection. CCL2, FGFR2, SFRP2, PDPN, DCN, CAV1, CHI3L1, ITGB3, FN1, and LOX which are upregulated, as well as CXCL10, NEBL, IHH, TGFBR3, SCUBE1, IGF1, EDNRA, RHOB, PPARD, and SLITRK5 genes whose expression is downregulated through the time of culture, were chosen as the potential markers, as their expression varied the most during the time of culture. The fold changes were further validated with RT-qPCR. The genes were described, with special attention to their possible function in GCs during culture. The results broaden the general knowledge about GC’s in vitro molecular processes and might serve as a point of reference for further in vivo and clinical studies.


Author(s):  
Shiwen Ni ◽  
Teng Zhang ◽  
Chenmin Zhou ◽  
Min Long ◽  
Xuan Hou ◽  
...  

Inosine monophosphate dehydrogenase (IMPDH), the rate-limiting enzyme catalyzing de novo biosynthesis of guanine nucleotides, aggregates under certain circumstances into a type of non-membranous filamentous macrostructure termed “cytoophidium” or “rod and ring” in several types of cells. However, the biological significance and underlying mechanism of IMPDH assembling into cytoophidium remain elusive. In mouse ovaries, IMPDH is reported to be crucial for the maintenance of oocyte–follicle developmental synchrony by providing GTP substrate for granulosa cell natriuretic peptide C/natriuretic peptide receptor 2 (NPPC/NPR2) system to produce cGMP for sustaining oocyte meiotic arrest. Oocytes and the associated somatic cells in the ovary hence render an exciting model system for exploring the functional significance of formation of IMPDH cytoophidium within the cell. We report here that IMPDH2 cytoophidium forms in vivo in the growing oocytes naturally and in vitro in the cumulus-enclosed oocytes treated with IMPDH inhibitor mycophenolic acid (MPA). Inhibition of IMPDH activity in oocytes and preimplantation embryos compromises oocyte meiotic and developmental competences and the development of embryos beyond the 4-cell stage, respectively. IMPDH cytoopidium also forms in vivo in the granulosa cells of the preovulatory follicles after the surge of luteinizing hormone (LH), which coincides with the resumption of oocyte meiosis and the reduction of IMPDH2 protein expression. In cultured COCs, MPA-treatment causes the simultaneous formation of IMPDH cytoopidium in cumulus cells and the resumption of meiosis in oocytes, which is mediated by the MTOR pathway and is prevented by guanosine supplementation. Therefore, our results indicate that cytoophidia do form in the oocytes and granulosa cells at particular stages of development, which may contribute to the oocyte acquisition of meiotic and developmental competences and the induction of meiosis re-initiation by the LH surge, respectively.


2017 ◽  
Vol 29 (2) ◽  
pp. 431 ◽  
Author(s):  
J. M. Connolly ◽  
M. T. Kane ◽  
L. R. Quinlan ◽  
P. Dockery ◽  
A. C. Hynes

Ovarian follicle culture is useful for elucidation of factors involved in the regulation of follicular function. We examined the effects of gas phase oxygen concentration, an oil overlay, serum type and medium supplementation with FSH, insulin–transferrin–selenium (ITS) and I-ascorbic acid on cultured preantral mouse follicle growth in a spherical, non-attached follicle culture system. Follicle growth in 5% oxygen was significantly (PPP>0.05) affected by an oil overlay, ITS supplementation or serum type. Culture in medium with 5% mouse serum, 1 IU mL–1 FSH, 25 μgmL–1 l-ascorbic acid and 20% oxygen without an oil overlay supported the growth of follicles to a maximum diameter of 380 μm in 6 days. Compared with mature preovulatory mouse follicles in vivo that often have diameters >500 μm within the same time frame, in vitro-grown follicles clearly exhibit limited growth. Thus, adequate oxygenation is an essential factor in the process of optimising follicle growth.


2020 ◽  
Author(s):  
Chan Yang ◽  
Qinghua Liu ◽  
Yingjun Chen ◽  
Xiaodong Wang ◽  
Zaohong Ran ◽  
...  

Abstract Previous studies have shown that long-term intake of exogenous melatonin can effectively delay ovarian aging, but the mechanism has not been fully elucidated. We observed that SNAT, the rate-limiting enzyme in the melatonin synthetic pathway, is localized in primordial and early follicle, and that granulosa cells isolated from follicle can synthesize melatonin. In vitro cultured neonatal mice ovaries with melatonin inhibited primordial follicle activation and early follicle growth. In vivo experiments further indicated that daily injections of melatonin to neonatal mice during the primordial follicle activation phase can reduce the number of activated follicles by inhibiting the PI3K-AKT-FOXO3 pathway; during the early follicle growth phase, injections of melatonin significantly suppressed early follicle growth and atresia, and transcriptome data showed that multiple pathways involved in folliculogenesis, including PI3K-AKT, were suppressed. Further, SNAT knockout in mice resulted in a significant increase in follicle activation and atresia, and eventually accelerated ovarian aging. We also demonstrated that prolonged high-dose melatonin intake had no obvious adverse effect on the health condition of mice. This study confirms that endogenous melatonin is involved in the regulation of ovarian aging, and reveals that melatonin delays ovarian aging by inhibiting primordial follicle activation, early follicle growth and atresia.


2016 ◽  
Vol 28 (10) ◽  
pp. 1570 ◽  
Author(s):  
J. M. Connolly ◽  
M. T. Kane ◽  
L. R. Quinlan ◽  
P. Dockery ◽  
A. C. Hynes

Ovarian follicle culture is useful for elucidation of factors involved in the regulation of follicular function. We examined the effects of gas phase oxygen concentration, an oil overlay, serum type and medium supplementation with FSH, insulin–transferrin–selenium (ITS) and l-ascorbic acid on cultured preantral mouse follicle growth in a spherical, non-attached follicle culture system. Follicle growth in 5% oxygen was significantly (P < 0.01) inferior to growth in 20% oxygen in terms of follicle diameter. This was likely due to hypoxia, as evidenced by significantly (P < 0.05) increased follicle secretion of vascular endothelial growth factor (VEGF), a marker of cell hypoxia. Follicular growth was not (P > 0.05) affected by an oil overlay, ITS supplementation or serum type. Culture in medium with 5% mouse serum, 1 IU mL–1 FSH, 25 μg mL–1 l-ascorbic acid and 20% oxygen without an oil overlay supported the growth of follicles to a maximum diameter of 380 μm in 6 days. Compared with mature preovulatory mouse follicles in vivo that often have diameters >500 μm within the same time frame, in vitro-grown follicles clearly exhibit limited growth. Thus, adequate oxygenation is an essential factor in the process of optimising follicle growth.


Reproduction ◽  
2018 ◽  
Vol 155 (4) ◽  
pp. 333-346 ◽  
Author(s):  
Zhoufei Mao ◽  
Liuhong Yang ◽  
Xiaosheng Lu ◽  
Anni Tan ◽  
Yuxia Wang ◽  
...  

C1q/tumor necrosis factor-related protein 3 (C1QTNF3) is a novel adipokine with modulating effects on metabolism, inflammation and the cardiovascular system. C1QTNF3 expression levels in the sera and omental adipose tissues of women with PCOS are low compared to control subjects. However, the expression and function of C1QTNF3 in the ovary has not previously been examined. Here, we assessed the expression patterns of C1qtnf3 in the ovary and explored its role in folliculogenesis. The C1qtnf3 transcript abundance was higher in large follicles than in small follicles and was under the influence of gonadotropin. C1QTNF3 was detected mainly in the granulosa cells and oocytes of growing follicles and modestly in the granulosa cells of atretic follicles and in luteal cells. Excess androgen significantly decreased C1QTNF3 expression in the ovaries in vivo and in granulosa cells in vitro. Recombinant C1QTNF3 protein accelerated the weight gain of ovarian explants and the growth of preantral follicles induced by follicle stimulating hormone (FSH) in vitro. The stimulatory effect of C1QTNF3 on ovarian growth was accompanied by the initiation of AKT, mTOR, p70S6K and 4EBP1 phosphorylation, an increase in CCND2 expression and a reduction in cleaved CASP3 levels. Moreover, the addition of C1QTNF3 accelerated proliferation and reduced activated CASP3/7 activity in granulosa cells. In vivo, the ovarian intrabursal administration of the C1QTNF3 antibody delayed gonadotropin-induced antral follicle development. Taken together, our data demonstrate that C1QTNF3 is an intraovarian factor that promotes follicle growth by accelerating proliferation, decelerating apoptosis and promoting AKT/mTOR phosphorylation.


Sign in / Sign up

Export Citation Format

Share Document