scholarly journals Decoding Attentional State to Faces and Scenes Using EEG Brainwaves

Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Reza Abiri ◽  
Soheil Borhani ◽  
Yang Jiang ◽  
Xiaopeng Zhao

Attention is the ability to facilitate processing perceptually salient information while blocking the irrelevant information to an ongoing task. For example, visual attention is a complex phenomenon of searching for a target while filtering out competing stimuli. In the present study, we developed a new Brain-Computer Interface (BCI) platform to decode brainwave patterns during sustained attention in a participant. Scalp electroencephalography (EEG) signals using a wireless headset were collected in real time during a visual attention task. In our experimental protocol, we primed participants to discriminate a sequence of composite images. Each image was a fair superimposition of a scene and a face image. The participants were asked to respond to the intended subcategory (e.g., indoor scenes) while withholding their responses for the irrelevant subcategories (e.g., outdoor scenes). We developed an individualized model using machine learning techniques to decode attentional state of the participant based on their brainwaves. Our model revealed the instantaneous attention towards face and scene categories. We conducted the experiment with six volunteer participants. The average decoding accuracy of our model was about 77%, which was comparable with a former study using functional magnetic resonance imaging (fMRI). The present work was an attempt to reveal momentary level of sustained attention using EEG signals. The platform may have potential applications in visual attention evaluation and closed-loop brainwave regulation in future.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Alaa Khadidos ◽  
Adil Khadidos ◽  
Olfat M. Mirza ◽  
Tawfiq Hasanin ◽  
Wegayehu Enbeyle ◽  
...  

The word radiomics, like all domains of type omics, assumes the existence of a large amount of data. Using artificial intelligence, in particular, different machine learning techniques, is a necessary step for better data exploitation. Classically, researchers in this field of radiomics have used conventional machine learning techniques (random forest, for example). More recently, deep learning, a subdomain of machine learning, has emerged. Its applications are increasing, and the results obtained so far have demonstrated their remarkable effectiveness. Several previous studies have explored the potential applications of radiomics in colorectal cancer. These potential applications can be grouped into several categories like evaluation of the reproducibility of texture data, prediction of response to treatment, prediction of the occurrence of metastases, and prediction of survival. Few studies, however, have explored the potential of radiomics in predicting recurrence-free survival. In this study, we evaluated and compared six conventional learning models and a deep learning model, based on MRI textural analysis of patients with locally advanced rectal tumours, correlated with the risk of recidivism; in traditional learning, we compared 2D image analysis models vs. 3D image analysis models, models based on a textural analysis of the tumour versus models taking into account the peritumoural environment in addition to the tumour itself. In deep learning, we built a 16-layer convolutional neural network model, driven by a 2D MRI image database comprising both the native images and the bounding box corresponding to each image.


2019 ◽  
Vol 125 ◽  
pp. 140-149 ◽  
Author(s):  
Jardel das C. Rodrigues ◽  
Pedro P. Rebouças Filho ◽  
Eugenio Peixoto ◽  
Arun Kumar N ◽  
Victor Hugo C. de Albuquerque

2020 ◽  
pp. 1577-1597
Author(s):  
Kusuma Mohanchandra ◽  
Snehanshu Saha

Machine learning techniques, is a crucial tool to build analytical models in EEG data analysis. These models are an excellent choice for analyzing the high variability in EEG signals. The advancement in EEG-based Brain-Computer Interfaces (BCI) demands advanced processing tools and algorithms for exploration of EEG signals. In the context of the EEG-based BCI for speech communication, few classification and clustering techniques is presented in this book chapter. A broad perspective of the techniques and implementation of the weighted k-Nearest Neighbor (k-NN), Support vector machine (SVM), Decision Tree (DT) and Random Forest (RF) is explained and their usage in EEG signal analysis is mentioned. We suggest that these machine learning techniques provides not only potentially valuable control mechanism for BCI but also a deeper understanding of neuropathological mechanisms underlying the brain in ways that are not possible by conventional linear analysis.


2022 ◽  
Vol 25 (1) ◽  
pp. 45-57
Author(s):  
Luis Fernández-Revuelta Pérez ◽  
Álvaro Romero Blasco

Cost estimation may become increasingly difficult, slow, and resource-consuming when it cannot be performed analytically. If traditional cost estimation techniques are usable at all under those circumstances, they have important limitations. This article analyses the potential applications of data science to management accounting, through the case of a cost estimation task posted on Kaggle, a Google data science and machine learning website. When extensive data exist, machine learning techniques can overcome some of those limitations. Applying machine learning to the data reveals non-obvious patterns and relationships that can be used to predict costs of new assemblies with acceptable accuracy. This article discusses the advantages and limitations of this approach and its potential to transform cost estimation, and more widely management accounting. The multinational company Caterpillar posted a contest on Kaggle to estimate the price that a supplier would quote for manufacturing a number of industrial assemblies, given historical quotes for similar assemblies. Hitherto, this problem would have required reverse-engineering the supplier’s accounting structure to establish the cost structure of each assembly, identifying non-obvious relationships among variables. This complex and tedious task is usually performed by human experts, adding subjectivity to the process. La estimación de costes puede resultar cada vez más difícil, lenta y consumidora de recursos cuando no puede realizarse de forma analítica. Cuando las técnicas tradicionales de estimación de costes son utilizadas en esas circunstancias se presentan importantes limitaciones. Este artículo analiza las posibles aplicaciones de la ciencia de datos a la contabilidad de gestión, a través del caso de una tarea de estimación de costes publicada en Kaggle, un sitio web de ciencia de datos y aprendizaje automático de Google. Cuando existen muchos datos, las técnicas de aprendizaje automático pueden superar algunas de esas limitaciones. La aplicación del aprendizaje automático a los datos revela patrones y relaciones no evidentes que pueden utilizarse para predecir los costes de nuevos montajes con una precisión aceptable. En nuestra investigación se analizan las ventajas y limitaciones de este enfoque y su potencial para transformar la estimación de costes y, más ampliamente, la contabilidad de gestión. La multinacional Caterpillar publicó un concurso en Kaggle para estimar el precio que un proveedor ofrecería por la fabricación de una serie de conjuntos industriales, dados los presupuestos históricos de conjuntos similares. Hasta ahora, este problema habría requerido una ingeniería inversa de la estructura contable del proveedor para establecer la estructura de costes de cada ensamblaje, identificando relaciones no obvias entre las variables. Esta compleja y tediosa tarea suele ser realizada por expertos humanos, lo que añade subjetividad al proceso.


2021 ◽  
Vol 19 (6) ◽  
pp. 584-602
Author(s):  
Lucian Jose Gonçales ◽  
Kleinner Farias ◽  
Lucas Kupssinskü ◽  
Matheus Segalotto

EEG signals are a relevant indicator for measuring aspects related to human factors in Software Engineering. EEG is used in software engineering to train machine learning techniques for a wide range of applications, including classifying task difficulty, and developers’ level of experience. The EEG signal contains noise such as abnormal readings, electrical interference, and eye movements, which are usually not of interest to the analysis, and therefore contribute to the lack of precision of the machine learning techniques. However, research in software engineering has not evidenced the effectiveness when applying these filters on EEG signals. The objective of this work is to analyze the effectiveness of filters on EEG signals in the software engineering context. As literature did not focus on the classification of developers’ code comprehension, this study focuses on the analysis of the effectiveness of applying EEG filters for training a machine learning technique to classify developers' code comprehension. A Random Forest (RF) machine learning technique was trained with filtered EEG signals to classify the developers' code comprehension. This study also trained another random forest classifier with unfiltered EEG data. Both models were trained using 10-fold cross-validation. This work measures the classifiers' effectiveness using the f-measure metric. This work used the t-test, Wilcoxon, and U Mann Whitney to analyze the difference in the effectiveness measures (f-measure) between the classifier trained with filtered EEG and the classifier trained with unfiltered EEG. The tests pointed out that there is a significant difference after applying EEG filters to classify developers' code comprehension with the random forest classifier. The conclusion is that the use of EEG filters significantly improves the effectivity to classify code comprehension using the random forest technique.


Author(s):  
Muhammad Yasir Bilal ◽  
Rana Muhammad Amir Latif ◽  
N. Z. Jhanjhi ◽  
Mamoona Humayun

Measuring and analyzing the student's visual attention are significant challenges in the e-learning environment. Machine learning techniques and multimedia tools can be used to examine the visual attention of a student. Emotions play a vital impact in understanding or judging the attention of the student in the class. If the student is interested in the lecture, the teacher can judge it by reading his emotions, and the learning has increased, and students can pay more attention to the classroom, authors say. The study explores the effect on the brand reputation of universities of information and communication technology (ICT), e-service quality, and e-information quality by focusing on the e-learning and fulfillment of students.


Author(s):  
Kusuma Mohanchandra ◽  
Snehanshu Saha

Machine learning techniques, is a crucial tool to build analytical models in EEG data analysis. These models are an excellent choice for analyzing the high variability in EEG signals. The advancement in EEG-based Brain-Computer Interfaces (BCI) demands advanced processing tools and algorithms for exploration of EEG signals. In the context of the EEG-based BCI for speech communication, few classification and clustering techniques is presented in this book chapter. A broad perspective of the techniques and implementation of the weighted k-Nearest Neighbor (k-NN), Support vector machine (SVM), Decision Tree (DT) and Random Forest (RF) is explained and their usage in EEG signal analysis is mentioned. We suggest that these machine learning techniques provides not only potentially valuable control mechanism for BCI but also a deeper understanding of neuropathological mechanisms underlying the brain in ways that are not possible by conventional linear analysis.


Sign in / Sign up

Export Citation Format

Share Document