scholarly journals The effects of applying filters on EEG signals for classifying developers’ code comprehension

2021 ◽  
Vol 19 (6) ◽  
pp. 584-602
Author(s):  
Lucian Jose Gonçales ◽  
Kleinner Farias ◽  
Lucas Kupssinskü ◽  
Matheus Segalotto

EEG signals are a relevant indicator for measuring aspects related to human factors in Software Engineering. EEG is used in software engineering to train machine learning techniques for a wide range of applications, including classifying task difficulty, and developers’ level of experience. The EEG signal contains noise such as abnormal readings, electrical interference, and eye movements, which are usually not of interest to the analysis, and therefore contribute to the lack of precision of the machine learning techniques. However, research in software engineering has not evidenced the effectiveness when applying these filters on EEG signals. The objective of this work is to analyze the effectiveness of filters on EEG signals in the software engineering context. As literature did not focus on the classification of developers’ code comprehension, this study focuses on the analysis of the effectiveness of applying EEG filters for training a machine learning technique to classify developers' code comprehension. A Random Forest (RF) machine learning technique was trained with filtered EEG signals to classify the developers' code comprehension. This study also trained another random forest classifier with unfiltered EEG data. Both models were trained using 10-fold cross-validation. This work measures the classifiers' effectiveness using the f-measure metric. This work used the t-test, Wilcoxon, and U Mann Whitney to analyze the difference in the effectiveness measures (f-measure) between the classifier trained with filtered EEG and the classifier trained with unfiltered EEG. The tests pointed out that there is a significant difference after applying EEG filters to classify developers' code comprehension with the random forest classifier. The conclusion is that the use of EEG filters significantly improves the effectivity to classify code comprehension using the random forest technique.

2020 ◽  
Author(s):  
Sonam Wangchuk ◽  
Tobias Bolch

<p>An accurate detection and mapping of glacial lakes in the Alpine regions such as the Himalayas, the Alps and the Andes are challenged by many factors. These factors include 1) a small size of glacial lakes, 2) cloud cover in optical satellite images, 3) cast shadows from mountains and clouds, 4) seasonal snow in satellite images, 5) varying degree of turbidity amongst glacial lakes, and 6) frozen glacial lake surface. In our study, we propose a fully automated approach, that overcomes most of the above mentioned challenges, to detect and map glacial lakes accurately using multi-source data and machine learning techniques such as the random forest classifier algorithm. The multi-source data are from the Sentinel-1 Synthetic Aperture Radar data (radar backscatter), the Sentinel-2 multispectral instrument data (NDWI), and the SRTM digital elevation model (slope). We use these data as inputs for the rule-based segmentation of potential glacial lakes, where decision rules are implemented from the expert system. The potential glacial lake polygons are then classified either as glacial lakes or non-glacial lakes by the trained and tested random forest classifier algorithm. The performance of the method was assessed in eight test sites located across the Alpine regions (e.g. the Boshula mountain range and Koshi basin in the Himalayas, the Tajiks Pamirs, the Swiss Alps and the Peruvian Andes) of the word. We show that the proposed method performs efficiently irrespective of geographic, geologic, climatic, and glacial lake conditions.</p>


2021 ◽  
Vol 10 (5) ◽  
pp. e13110514732
Author(s):  
Paulo César Ossani ◽  
Diogo Francisco Rossoni ◽  
Marcelo Ângelo Cirillo ◽  
Flávio Meira Borém

Specialty coffees have a big importance in the economic scenario, and its sensory quality is appreciated by the productive sector and by the market. Researches have been constantly carried out in the search for better blends in order to add value and differentiate prices according to the product quality. To accomplish that, new methodologies must be explored, taking into consideration factors that might differentiate the particularities of each consumer and/or product. Thus, this article suggests the use of the machine learning technique in the construction of supervised classification and identification models. In a sensory evaluation test for consumer acceptance using four classes of specialty coffees, applied to four groups of trained and untrained consumers, features such as flavor, body, sweetness and general grade were evaluated. The use of machine learning is viable because it allows the classification and identification of specialty coffees produced in different altitudes and different processing methods.


Now days when someone decide to book a hotel, previous online reviews of the hotels play a major role in determining the best hotel within the budget of the customer. Previous Online reviews are the most important motivation for the information that are used to analyse public opinion. Because of the high impact of the reviews on business, hotel owners are always highly concerned and focused about the customer feedback and past online reviews. But all reviews are not true and trustworthy, sometime few people may intentionally generate the fake reviews to make some hotel famous of to defame. Therefore it is essential to develop and propose the techniques for analysis of reviews. With the help of various machine learning techniques viz. Supervised machine learning technique, Text mining, Unsupervised machine learning technique, Semi-supervised learning, Reinforcement learning etc we may detect the fake reviews. This paper gives some notions of using machine learning techniques in analysis of past online reviews of hotels, Based on the observation it also suggest the optimal machine learning technique for a particular situation


Author(s):  
Myeong Sang Yu

The revolutionary development of artificial intelligence (AI) such as machine learning and deep learning have been one of the most important technology in many parts of industry, and also enhance huge changes in health care. The big data obtained from electrical medical records and digitalized images accelerated the application of AI technologies in medical fields. Machine learning techniques can deal with the complexity of big data which is difficult to apply traditional statistics. Recently, the deep learning techniques including convolutional neural network have been considered as a promising machine learning technique in medical imaging applications. In the era of precision medicine, otolaryngologists need to understand the potentialities, pitfalls and limitations of AI technology, and try to find opportunities to collaborate with data scientists. This article briefly introduce the basic concepts of machine learning and its techniques, and reviewed the current works on machine learning applications in the field of otolaryngology and rhinology.


2019 ◽  
Vol 8 (4) ◽  
pp. 10316-10320

Nowadays, heart disease has become a major disease among the people irrespective of the age. We are seeing this even in children dying due to the heart disease. If we can predict this even before they die, there may be huge chances of surviving. Everybody has various qualities of beat rate (pulse rate) and circulatory strain (blood pressure). We are living in a period of data. Due to the rise in the technology, the amount of data that is generated is increasing daily. Some terabytes of data are being produced and stored. For example, the huge amount of data about the patients is produced in the hospitals such as chest pain, heart rate, blood pressure, pulse rate etc. If we can get this data and apply some machine learning techniques, we can reduce the probability of people dying. In this paper we have done survey using different classification and grouping strategies, for example, KNN, Decision tree classifier, Gaussian Naïve Bayes, Support vector machine, Linear regression, Logistic regression, Random forest classifier, Random forest regression, linear descriptive analysis. We have taken the 14 attributes that are present in the dataset as an input and applying on the dataset which is taken from the UCI repository to develop and accurate model of predicting the heart disease contains colossal (huge) therapeutic (medical) information. In the proposed research, the exhibition of the conclusion model is acquired by using utilizing classification strategies. In this paper proposed an accuracy model to predict whether a person has coronary disease or not. This is implemented by comparing the accuracies of different machine-learning strategies such as KNN, Decision tree classifier, Gaussian Naïve Bayes, SVM, Logistic regression, Random forest classifier, Linear regression, Random forest regression, linear descriptive analysis


2021 ◽  
pp. 31-41
Author(s):  
Meenu Gupta ◽  
◽  
◽  
Riya Srivastava

Bitcoin is one of the primary computerized monetary forms to utilize peer innovation to work with moment installments. The free people and organizations who own the overseeing figuring control and take part in the bitcoin network—bitcoin miners— are accountable for preparing the exchanges on the blockchain and are persuaded by remunerations (the arrival of new bitcoin) and exchange charges paid in bitcoin. These excavators can be considered as the decentralized authority implementing the believability of the bitcoin network. New bitcoin is delivered to the excavators at a fixed yet occasionally declining rate. There is just 21 million bitcoin that can be mine altogether. As of January 30, 2021, there are around 18,614,806 bitcoin in presence and 2,385,193 bitcoin left to be mined. This paper will predict the nature of bitcoin price because, according to the reports of the past few years. The year 2020-present appeared to be a good time for bitcoin because, in this time duration, bitcoin has seen huge ups and downs. This paper will use various Machine Learning Techniques for the predictive analysis of bitcoin to accurately predict the price's nature. As the price of bitcoin depends upon various factors and these factors directly affect the price, i.e., multiple factors of bitcoin are dependent on each other. After analyzing the results from multiple research papers and review papers, we discovered each algorithm has its advantages and disadvantages while predicting the bitcoin value. Keeping in mind all the findings, we will find algorithms that predict the bitcoin price accurately and without fewer disadvantages. So, if we go as per assumptions, regression would be the best choice for predicting the bitcoin value, but there are others algorithms also. So, in this paper, we will see the results of the multiple algorithms and then choose the correct algorithm after analyzing the results of all the implemented algorithms. This paper also includes the implementation of the comparison charts with each algorithm so that it will be easy to analyze the findings of each algorithm.


Atmosphere ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 111 ◽  
Author(s):  
Chul-Min Ko ◽  
Yeong Yun Jeong ◽  
Young-Mi Lee ◽  
Byung-Sik Kim

This study aimed to enhance the accuracy of extreme rainfall forecast, using a machine learning technique for forecasting hydrological impact. In this study, machine learning with XGBoost technique was applied for correcting the quantitative precipitation forecast (QPF) provided by the Korea Meteorological Administration (KMA) to develop a hydrological quantitative precipitation forecast (HQPF) for flood inundation modeling. The performance of machine learning techniques for HQPF production was evaluated with a focus on two cases: one for heavy rainfall events in Seoul and the other for heavy rainfall accompanied by Typhoon Kong-rey (1825). This study calculated the well-known statistical metrics to compare the error derived from QPF-based rainfall and HQPF-based rainfall against the observational data from the four sites. For the heavy rainfall case in Seoul, the mean absolute errors (MAE) of the four sites, i.e., Nowon, Jungnang, Dobong, and Gangnam, were 18.6 mm/3 h, 19.4 mm/3 h, 48.7 mm/3 h, and 19.1 mm/3 h for QPF and 13.6 mm/3 h, 14.2 mm/3 h, 33.3 mm/3 h, and 12.0 mm/3 h for HQPF, respectively. These results clearly indicate that the machine learning technique is able to improve the forecasting performance for localized rainfall. In addition, the HQPF-based rainfall shows better performance in capturing the peak rainfall amount and spatial pattern. Therefore, it is considered that the HQPF can be helpful to improve the accuracy of intense rainfall forecast, which is subsequently beneficial for forecasting floods and their hydrological impacts.


Webology ◽  
2021 ◽  
Vol 18 (Special Issue 01) ◽  
pp. 183-195
Author(s):  
Thingbaijam Lenin ◽  
N. Chandrasekaran

Student’s academic performance is one of the most important parameters for evaluating the standard of any institute. It has become a paramount importance for any institute to identify the student at risk of underperforming or failing or even drop out from the course. Machine Learning techniques may be used to develop a model for predicting student’s performance as early as at the time of admission. The task however is challenging as the educational data required to explore for modelling are usually imbalanced. We explore ensemble machine learning techniques namely bagging algorithm like random forest (rf) and boosting algorithms like adaptive boosting (adaboost), stochastic gradient boosting (gbm), extreme gradient boosting (xgbTree) in an attempt to develop a model for predicting the student’s performance of a private university at Meghalaya using three categories of data namely demographic, prior academic record, personality. The collected data are found to be highly imbalanced and also consists of missing values. We employ k-nearest neighbor (knn) data imputation technique to tackle the missing values. The models are developed on the imputed data with 10 fold cross validation technique and are evaluated using precision, specificity, recall, kappa metrics. As the data are imbalanced, we avoid using accuracy as the metrics of evaluating the model and instead use balanced accuracy and F-score. We compare the ensemble technique with single classifier C4.5. The best result is provided by random forest and adaboost with F-score of 66.67%, balanced accuracy of 75%, and accuracy of 96.94%.


Author(s):  
Ramesh Ponnala ◽  
K. Sai Sowjanya

Prediction of Cardiovascular ailment is an important task inside the vicinity of clinical facts evaluation. Machine learning knowledge of has been proven to be effective in helping in making selections and predicting from the huge amount of facts produced by using the healthcare enterprise. on this paper, we advocate a unique technique that pursuits via finding good sized functions by means of applying ML strategies ensuing in improving the accuracy inside the prediction of heart ailment. The severity of the heart disease is classified primarily based on diverse methods like KNN, choice timber and so on. The prediction version is added with special combos of capabilities and several known classification techniques. We produce a stronger performance level with an accuracy level of a 100% through the prediction version for heart ailment with the Hybrid Random forest area with a linear model (HRFLM).


Sign in / Sign up

Export Citation Format

Share Document