scholarly journals Improved Wound Healing of Airway Epithelial Cells Is Mediated by Cold Atmospheric Plasma: A Time Course-Related Proteome Analysis

2019 ◽  
Vol 2019 ◽  
pp. 1-21 ◽  
Author(s):  
Christian Scharf ◽  
Christine Eymann ◽  
Philipp Emicke ◽  
Jörg Bernhardt ◽  
Martin Wilhelm ◽  
...  

The promising potential of cold atmospheric plasma (CAP) treatment as a new therapeutic option in the field of medicine, particularly in Otorhinolaryngology and Respiratory medicine, demands primarily the assessment of potential risks and the prevention of any direct and future cell damages. Consequently, the application of a special intensity of CAP that is well tolerated by cells and tissues is of particular interest. Although improvement of wound healing by CAP treatment has been described, the underlying mechanisms and the molecular influences on human tissues are so far only partially characterized. In this study, human S9 bronchial epithelial cells were treated with cold plasma of atmospheric pressure plasma jet that was previously proven to accelerate the wound healing in a clinically relevant extent. We studied the detailed cellular adaptation reactions for a specified plasma intensity by time-resolved comparative proteome analyses of plasma treated vs. nontreated cells to elucidate the mechanisms of the observed improved wound healing and to define potential biomarkers and networks for the evaluation of plasma effects on human epithelial cells. K-means cluster analysis and time-related analysis of fold-change factors indicated concordantly clear differences between the short-term (up to 1 h) and long-term (24-72 h) adaptation reactions. Thus, the induction of Nrf2-mediated oxidative and endoplasmic reticulum stress response, PPAR-alpha/RXR activation as well as production of peroxisomes, and prevention of apoptosis already during the first hour after CAP treatment are important cell strategies to overcome oxidative stress and to protect and maintain cell integrity and especially microtubule dynamics. After resolving of stress, when stress adaptation was accomplished, the cells seem to start again with proliferation and cellular assembly and organization. The observed strategies and identification of marker proteins might explain the accelerated wound healing induced by CAP, and these indicators might be subsequently used for risk assessment and quality management of application of nonthermal plasma sources in clinical settings.

2018 ◽  
Vol 112 ◽  
pp. 163-168 ◽  
Author(s):  
Cynthia M. Schwartz ◽  
Braedyn A. Dorn ◽  
Selam Habtemariam ◽  
Cynthia L. Hill ◽  
Tendy Chiang ◽  
...  

CHEST Journal ◽  
2019 ◽  
Vol 155 (3) ◽  
pp. 534-539 ◽  
Author(s):  
Michael D. Davis ◽  
Isao Suzaki ◽  
Shuichi Kawano ◽  
Kosaku Komiya ◽  
Qing Cai ◽  
...  

2019 ◽  
Vol 47 (11) ◽  
pp. 4848-4860 ◽  
Author(s):  
Donghai Li ◽  
Guiling Li ◽  
Jing Li ◽  
Zhi-Qiang Liu ◽  
Xuman Zhang ◽  
...  

2018 ◽  
Vol 8 (4) ◽  
pp. 379-401 ◽  
Author(s):  
Constance Duchesne ◽  
Nadira Frescaline ◽  
Jean-Jacques Lataillade ◽  
Antoine Rousseau

1999 ◽  
Vol 277 (1) ◽  
pp. L204-L217 ◽  
Author(s):  
Alfred Lee ◽  
Dar Chow ◽  
Brian Haus ◽  
Wanru Tseng ◽  
David Evans ◽  
...  

The role of tight junctions in the binding and cytoxicity of Pseudomonas aeruginosato apical or basolateral membranes of lung airway epithelial cells was tested with fluorescence microscopy on living cells. Binding of noncytotoxic P. aeruginosa strain O1 was assessed with P. aeruginosa that expressed green fluorescent protein. Binding of cytotoxic P. aeruginosa strain 6206 was assessed with FITC-labeled P. aeruginosa; cytotoxicity was determined from nuclear uptake of the impermeant dye propidium iodide. The role of direct contact of P. aeruginosa to epithelial cells was tested with filters with small (0.45-μm) or large (2.0-μm) pores. High transepithelial resistance ( Rt) Calu-3 and cultured bovine tracheal monolayers ( Rt> 1,000 Ω ⋅ cm2) bound P. aeruginosa very infrequently (<1 P. aeruginosa/100 cells) at the apical membrane, but P. aeruginosabound frequently to cells near “free edges” at holes, wounds, islands, and perimeters; cytotoxicity required direct interaction with basolateral membranes. Wounded high Rtepithelia showed increased P. aeruginosa binding and cytotoxicity at the free edges because basolateral membranes were accessible to P. aeruginosa, and dead and living cells near the wound bound P. aeruginosa similarly. Compared with high Rtepithelia, low RtCFT1 ( Rt= 100–200 Ω ⋅ cm2) and EGTA-treated Calu-3 monolayers were 25 times more susceptible to P. aeruginosa binding throughout the monolayer. Cytotoxicity to CFT1 cells (throughout the confluent monolayer, not only at the free edge) occurred after a shorter delay (0.25 vs. 2.0 h) and then five times faster than to Calu-3 cells, indicating that the time course of P. aeruginosa cytotoxicity may be limited by the rate of gaining access through tight junctions and that this occurred faster in low Rtthan in high Rtairway epithelia. Cytotoxicity appeared to occur in a sequential process that led first to a loss of fura 2 and a later uptake of propidium iodide. P. aeruginosa bound three times more frequently to regions between cells (tight junctions?) than to cell membranes of low RtCFT1 cells.


2002 ◽  
Vol 283 (3) ◽  
pp. L503-L509 ◽  
Author(s):  
Christopher M. Waters ◽  
Peter H. S. Sporn ◽  
Mingyao Liu ◽  
Jeffrey J. Fredberg

Mechanical forces affect both the function and phenotype of cells in the lung. In this symposium, recent studies were presented that examined several aspects of biomechanics in lung cells and their relationship to disease. Wound healing and recovery from injury in the airways involve epithelial cell spreading and migration on a substrate that undergoes cyclic mechanical deformation; enhanced green fluorescent protein-actin was used in a stable cell line to examine cytoskeletal changes in airway epithelial cells during wound healing. Eosinophils migrate into the airways during asthmatic attacks and can also be exposed to cyclic mechanical deformation; cyclic mechanical stretch caused a decrease in leukotriene C4 synthesis that may be dependent on mechanotransduction mechanisms involving the production of reactive oxygen species. Recent studies have suggested that proinflammatory cytokines are increased in ventilator-induced lung injury and may be elevated by overdistention of the lung tissue; microarray analysis of human lung epithelial cells demonstrated that cyclic mechanical stretch alone profoundly affects gene expression. Finally, airway hyperresponsiveness is a basic feature of asthma, but the relationship between airway hyperresponsiveness and changes in airway smooth muscle (ASM) function remain unclear. New analysis of the behavior of the ASM cytoskeleton (CSK) suggests, however, that the CSK may behave as a glassy material and that glassy behavior may account for the extensive ASM plasticity and remodeling that contribute to airway hyperresponsiveness. Together, the presentations at this symposium demonstrated the remarkable and varied roles that mechanical forces may play in both normal lung physiology as well as pathophysiology.


2020 ◽  
Vol 5 (10) ◽  

Cold atmospheric plasma (CAP), a room temperate ionised gas, known as the fourth state of matter is an ionised gas and can be produced from argon, helium, nitrogen, oxygen or air at atmospheric pressure and low temperatures. CAP has become a new promising way for many biomedical applications, such as disinfection, cancer treatment, root canal treatment, wound healing, and other medical applications. Among these applications, investigations of plasma for skin wound healing have gained huge success both in vitro and in vivo experiments without any known significant negative effects on healthy tissues. The development of CAP devices has led to novel therapeutic strategies in wound healing, tissue regeneration and skin infection management. CAP consists of a mixture of multitude of active components such as charged particles, electric field, UV radiation, and reactive gas species which can act synergistically. CAP has lately been recognized as an alternative approach in medicine for sterilization of wounds by its antiseptic effects and promotion of wound healing by stimulation of cell proliferation and migration of wound related skin cells. With respect to CAP applications in medicine, this review focuses particularly on the potential of CAP and the known molecular basis for this action. We summarize the available literature on the plasma devices developed for wound healing, the current in vivo and in vitro use of CAP, and the mechanism behind it as well as the biosafety issues.


1990 ◽  
Vol 258 (6) ◽  
pp. L343-L348 ◽  
Author(s):  
J. D. McCann ◽  
M. J. Welsh

We previously described a Ca2(+)-activated K+ channel (KCLIC) in airway epithelial cells [J. D. McCann, J. Matsuda, M. Garcia, G. Kaczorowski, and M. J. Welsh. Am. J. Physiol 258 (Lung Cell. Mol. Physiol. 2): L334-L342, 1990]. To determine whether the KCLIC channel is a basolateral membrane channel and to understand its role in Cl- secretion, we studied airway epithelial cells grown on permeable supports. When cells were stimulated with A23187, charybdotoxin (ChTX) inhibited Cl- secretion and 86Rb efflux at the same concentrations, indicating that the KCLIC channel is required for Ca2(+)-stimulated Cl- secretion. We also investigated the function of K+ channels in adenosine 3',5'-cyclic monophosphate-stimulated secretion. Addition of isoproterenol caused a biphasic increase in Cl- secretion; the time course of the transient component correlated with the time course of the isoproterenol-induced increase in Ca2+ concentration [( Ca2+]c). ChTX inhibited the transient component, but not the prolonged component of secretion; Ba2+ inhibited the sustained component. These results suggest that when cells are grown on permeable supports isoproterenol-induced secretion depends on activation of two types of K+ channel: the KCLIC channel that is stimulated initially and a ChTX-insensitive K+ channel that is stimulated during sustained secretion. This conclusion was supported by measurement of 86Rb efflux from cell monolayers


2018 ◽  
Vol 59 (1) ◽  
pp. 92-101 ◽  
Author(s):  
Jun-Ping Zhang ◽  
Ling Guo ◽  
Qi-Liang Chen ◽  
Ke-Ying Zhang ◽  
Tian Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document