scholarly journals Mobile Robot Indoor Positioning System Based on K-ELM

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Haixia Wang ◽  
Junliang Li ◽  
Wei Cui ◽  
Xiao Lu ◽  
Zhiguo Zhang ◽  
...  

Mobile Robot Indoor Positioning System has wide application in the industry and home automation field. Unfortunately, existing mobile robot indoor positioning methods often suffer from poor positioning accuracy, system instability, and need for extra installation efforts. In this paper, we propose a novel positioning system which applies the centralized positioning method into the mobile robot, in which real-time positioning is achieved via interactions between ARM and computer. We apply the Kernel extreme learning machine (K-ELM) algorithm as our positioning algorithm after comparing four different algorithms in simulation experiments. Real-world indoor localization experiments are conducted, and the results demonstrate that the proposed system can not only improve positioning accuracy but also greatly reduce the installation efforts since our system solely relies on Wi-Fi devices.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xiaohua Li ◽  
Ge Yu

Estimating the indoor position of users in commercial buildings remains a significant challenge to date. Although the WiFi-based indoor localization has been widely explored in many works by employing received signal strength (RSS) patterns as the features, they usually lead to inaccurate results as the RSS could be easily affected by the indoor environmental dynamics. Besides, existing methods are computationally intensive, which have a high time consumption that makes them unsuitable for real-life applications. In order to deal with those issues, we propose to use standardizing waveform tendency (SWT) of RSS for indoor positioning. We show that the proposed SWT is robust to the noise generated by the dynamic environment. We further develop a novel smartphone indoor positioning system by integrating SWT and kernel extreme learning machine (KELM) algorithm. Extensive real-world positioning experiments are conducted to demonstrate the superiority of our proposed model in terms of both positioning accuracy and robustness to environmental changes when comparing with state-of-the-art baselines.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yunxin Xie ◽  
Chenyang Zhu ◽  
Wei Jiang ◽  
Jia Bi ◽  
Zhengwei Zhu

Recently, there has been growing interest in improving the efficiency and accuracy of the Indoor Positioning System (IPS). The Received Signal Strength- (RSS-) based fingerprinting technique is essential for indoor localization. However, it is challenging to estimate the indoor position based on RSS’s measurement under the complex indoor environment. This paper evaluates three machine learning approaches and Gaussian Process (GP) regression with three different kernels to get the best indoor positioning model. The hyperparameter tuning technique is used to select the optimum parameter set for each model. Experiments are carried out with RSS data from seven access points (AP). Results show that GP with a rational quadratic kernel and eXtreme gradient tree boosting model has the best positioning accuracy compared to other models. In contrast, the eXtreme gradient tree boosting model could achieve higher positioning accuracy with smaller training size and fewer access points.


2021 ◽  
Vol 2078 (1) ◽  
pp. 012070
Author(s):  
Qianrong Zhang ◽  
Yi Li

Abstract Ultra-wideband (UWB) has broad application prospects in the field of indoor localization. In order to make up for the shortcomings of ultra-wideband that is easily affected by the environment, a positioning method based on the fusion of infrared vision and ultra-wideband is proposed. Infrared vision assists locating by identifying artificial landmarks attached to the ceiling. UWB uses an adaptive weight positioning algorithm to improve the positioning accuracy of the edge of the UWB positioning coverage area. Extended Kalman filter (EKF) is used to fuse the real-time location information of the two. Finally, the intelligent mobile vehicle-mounted platform is used to collect infrared images and UWB ranging information in the indoor environment to verify the fusion method. Experimental results show that the fusion positioning method is better than any positioning method, has the advantages of low cost, real-time performance, and robustness, and can achieve centimeter-level positioning accuracy.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xiaona Zhang ◽  
Shufang Zhang ◽  
Shuaiheng Huai

In this article, we use a low-power iBeacon network to conduct an in-depth analysis and research on the principle of indoor positioning and adopt an efficient and fast positioning algorithm. Secondly, based on the obtained analysis, an iBeacon-based indoor positioning system is proposed to analyze how to use iBeacon for accurate positioning and whether it can effectively compensate for the current mainstream positioning system. We analyze the requirements of the iBeacon-based indoor positioning system and propose the design of this positioning system. We analyze the platform and environment for software development, design the general framework of the positioning system, and analyze the logical structure of the whole system, the structure of data flow, and the communication protocols between each module of the positioning system. Then, we analyze the functions of the server module and the client module of the system, implement the functions of each module separately, and debug the functions of each module separately after each module is implemented. The feasibility of the algorithm and the performance improvement are confirmed by the experimental data. Our results show that the communication distance is improved by approximately 20.25% and the accuracy is improved by 5.62% compared to other existing results.


Author(s):  
Michael Adeyeye Oshin ◽  
Nobaene Sehloho

With many different studies showing a growing demand for the development of indoor positioning systems, numerous positioning and tracking methods and tools are available for which can be used for mobile devices. Therefore, an interest is more on development of indoor positioning and tracking systems that are accurate and effective. Presented and proposed in this work, is an indoor positioning system. As opposed to an Ad-hoc Positioning System (APS), it uses a Wireless Mesh Network (WMN). The system makes use of an already existing Wi-Fi infrastructure technology. Moreover, the approach tests the positioning of a node with its neighbours in a mesh network using multi-hopping functionality. The positioning measurements used were the ICMP echos, RSSI and RTS/CTS requests and responses. The positioning method used was the trilateral technique, in combination with the idea of the fingerprinting method. Through research and experimentation, this study developed a system which shows potential as a positioning system with an error of about 2 m to 3 m. The hybridisation of the method proves an enhancement in the system though improvements are still required.


Building a precise low cost indoor positioning and navigation wireless system is a challenging task. The accuracy and cost should be taken together into account. Especially, when we need a system to be built in a harsh environment. In recent years, several researches have been implemented to build different indoor positioning system (IPS) types for human movement using wireless commercial sensors. The aim of this paper is to prove that it is not always the case that having a larger number of anchor nodes will increase the accuracy. Two and three anchor nodes of ultra-wide band with or without the commercial devices (DW 1000) could be implemented in this work to find the Localization of objects in different indoor positioning system, for which the results showed that sometimes three anchor nodes are better than two and vice versa. It depends on how to install the anchor nodes in an appropriate scenario that may allow utilizing a smaller number of anchors while maintaining the required accuracy and cost.


2020 ◽  
Vol 17 (1) ◽  
pp. 172988141989666 ◽  
Author(s):  
Wei Cui ◽  
Qingde Liu ◽  
Linhan Zhang ◽  
Haixia Wang ◽  
Xiao Lu ◽  
...  

Recently, most of the existing mobile robot indoor positioning systems (IPSs) use infrared sensors, cameras, and other extra infrastructures. They usually suffer from high cost and special hardware implementation. In order to address the above problems, this article proposes a Wi-Fi-based indoor mobile robot positioning system and designs and develops a robot positioning platform based on the commercial Wi-Fi devices, such as Wi-Fi routers. Furthermore, a robust principal component analysis-based extreme learning machine algorithm is proposed to address the issue of noisy measurements in IPSs. Real-world robot indoor positioning experiments are extensively carried out and the results verify the effectiveness and superiority of the proposed system.


Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3657 ◽  
Author(s):  
Michał R. Nowicki ◽  
Piotr Skrzypczyński

WiFi-based fingerprinting is promising for practical indoor localization with smartphones because this technique provides absolute estimates of the current position, while the WiFi infrastructure is ubiquitous in the majority of indoor environments. However, the application of WiFi fingerprinting for positioning requires pre-surveyed signal maps and is getting more restricted in the recent generation of smartphones due to changes in security policies. Therefore, we sought new sources of information that can be fused into the existing indoor positioning framework, helping users to pinpoint their position, even with a relatively low-quality, sparse WiFi signal map. In this paper, we demonstrate that such information can be derived from the recognition of camera images. We present a way of transforming qualitative information of image similarity into quantitative constraints that are then fused into the graph-based optimization framework for positioning together with typical pedestrian dead reckoning (PDR) and WiFi fingerprinting constraints. Performance of the improved indoor positioning system is evaluated on different user trajectories logged inside an office building at our University campus. The results demonstrate that introducing additional sensing modality into the positioning system makes it possible to increase accuracy and simultaneously reduce the dependence on the quality of the pre-surveyed WiFi map and the WiFi measurements at run-time.


Sign in / Sign up

Export Citation Format

Share Document