scholarly journals Distribution, Characteristics, and Regulatory Potential of Long Noncoding RNAs in Brown-Rot Fungi

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Alessandra Borgognone ◽  
Walter Sanseverino ◽  
Riccardo Aiese Cigliano ◽  
Raúl Castanera

Long noncoding RNAs have been thoroughly studied in plants, animals, and yeasts, where they play important roles as regulators of transcription. Nevertheless, almost nothing is known about their presence and characteristics in filamentous fungi, especially in basidiomycetes. In the present study, we have carried out an exhaustive annotation and characterization of lncRNAs in two lignin degrader basidiomycetes, Coniophora puteana and Serpula lacrymans. We identified 2,712 putative lncRNAs in the former and 2,242 in the latter, mainly originating from intergenic locations of transposon-sparse genomic regions. The lncRNA length, GC content, expression levels, and stability of the secondary structure differ from coding transcripts but are similar in these two species and resemble that of other eukaryotes. Nevertheless, they lack sequence conservation. Also, we found that lncRNAs are transcriptionally regulated in the same proportion as genes when the fungus actively decomposes soil organic matter. Finally, up to 7% of the upstream gene regions of Coniophora puteana and Serpula lacrymans are transcribed and produce lncRNAs. The study of expression trends in these gene-lncRNA pairs uncovered groups with similar and opposite transcriptional profiles which may be the result of cis-transcriptional regulation.

2020 ◽  
Author(s):  
Azali Azlan ◽  
Mardani Abdul Halim ◽  
Faisal Mohamad ◽  
Ghows Azzam

AbstractThe Southern house mosquito, Culex quinquefasciatus (Cx. quinquefasciatus) is an important vector that transmit multiple diseases including West Nile encephalitis, Japanese encephalitis, St. Louis encephalitis and lymphatic filariasis. Long noncoding RNAs (lncRNAs) involve in many biological processes such development, infection, and virus-host interaction. However, there is no systematic identification and characterization of lncRNAs in Cx. quinquefasciatus. Here, we report the first ever lncRNA identification in Cx. quinquefasciatus. By using 31 public RNA-seq datasets, a total of 4,763 novel lncRNA transcripts were identified, of which 3,591, 569, and 603 were intergenic, intronic, and antisense respectively. Examination of genomic features revealed that Cx. quinquefasciatus shared similar characteristics with other species such as short in length, low GC content, low sequence conservation, and low coding potential. Furthermore, compared to protein-coding genes, Cx. quinquefasciatus lncRNAs had lower expression values, and tended to be expressed in temporally-specific fashion. In addition, weighted correlation network and functional annotation analyses showed that lncRNAs may have roles in blood meal acquisition of adult female Cx. quinquefasciatus mosquitoes. This study presents the first systematic identification and analysis of Cx. quinquefasciatus lncRNAs and their association with blood feeding. Results generated from this study will facilitate future investigation on the function of Cx. quinquefasciatus lncRNAs.


Biology ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 232
Author(s):  
Weiran Zheng ◽  
Haichao Hu ◽  
Qisen Lu ◽  
Peng Jin ◽  
Linna Cai ◽  
...  

Recent studies have shown that a large number of long noncoding RNAs (lncRNAs) can regulate various biological processes in animals and plants. Although lncRNAs have been identified in many plants, they have not been reported in the model plant Nicotiana benthamiana. Particularly, the role of lncRNAs in plant virus infection remains unknown. In this study, we identified lncRNAs in N. benthamiana response to Chinese wheat mosaic virus (CWMV) infection by RNA sequencing. A total of 1175 lncRNAs, including 65 differentially expressed lncRNAs, were identified during CWMV infection. We then analyzed the functions of some of these differentially expressed lncRNAs. Interestingly, one differentially expressed lncRNA, XLOC_006393, was found to participate in CWMV infection as a precursor to microRNAs in N. benthamiana. These results suggest that lncRNAs play an important role in the regulatory network of N. benthamiana in response to CWMV infection.


2013 ◽  
Vol 778 ◽  
pp. 818-822
Author(s):  
Jiří Frankl

This paper presents results of experimental laboratory establishment of changes in physical properties (swelling, water absorption) of timber (spruce, pine, oak) caused by wood-destroying fungi (Serpula lacrymans, Stereum hirsutum). The experiment was carried out using standard test samples (20x20x30 mm) prepared from new timber and subsequently exposed to the wood-destroying fungi under optimal growth conditions for the period of 10 to 30 days. Changes in physical properties were observed in the damaged samples in compliance with CSN 490126 (equivalent to ISO 4859-1982, equivalent to ISO 4860-1982) and CSN 490104 Czech National Standards. The experiment proved changes in the observed properties depending on the wood and fungi species and the duration of the exposure.


Sign in / Sign up

Export Citation Format

Share Document