scholarly journals Research on Enrichment of P2O5 from Low-Grade Carbonaceous Phosphate Ore via Organic Acid Solution

2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Fei Xie ◽  
Jie Zhang ◽  
Jiyan Chen ◽  
Jianrui Wang ◽  
Lin Wu

The theory of using dilute organic acid solutions to leach the carbonaceous part from low-grade carbonaceous phosphate ore has been proposed by researchers as an effective approach to increase the proportion of P and to utilize the abundant low-grade resource. In this paper, a comprehensive experimental study was carried out to confirm the feasibility of organic acid leaching and investigate the optimized leaching conditions. Utilizing the low-grade carbonaceous phosphate ore produced in Zhijin, southwest of China, the effects of different types of acid, acid concentrations, reaction temperatures, reaction times, and liquid-solid ratios on leaching rate of P2O5 were evaluated using single-factor experiments and orthogonal experiments. The reaction mechanism, examined by SEM technique and the reaction thermodynamic analysis suggested that the leaching of P2O5 mainly resulted from the process of dissolution of dolomite (the main gangue mineral) in organic acid, consequently enriching the phosphate rock (the mineral of value). The effectiveness and impacts of different types of acid and reaction conditions were also studied. To conclude, this study first confirmed the viability of enriching P2O5 from low-grade ores through organic acid leaching the carbonaceous part by experimental data, and the experimental results will provide an essential scientific support for further upgrade of the technology to commercial scale utilization.

2013 ◽  
Vol 49 (1) ◽  
pp. 97-106 ◽  
Author(s):  
D. Hariprasad ◽  
M. Mohapatra ◽  
S. Anand

Low and medium grade land as well sea based manganese ores were used for manganese extraction in H2SO4 - NH3NH2HSO4 (hydrazine sulphate) medium For land based Mn ores, only Mn recovery is important but for sea nodules which contain substantial amounts Co, Ni, and Cu, their recovery is equally important. In the present studies four samples used were: Indian ocean manganese nodules, medium and low grade Mn ores of Gujarat, and low grade Mn ore of Orissa, India. The Mn content of these ores varied from 15 to 39%. The objective of this work is to establish a reductant which can be used for leaching Mn from all types of ores. The optimum conditions established for nodules by varying parameters such as time, temperature, pulp density, H2SO4 and NH3NH2HSO4 concentrations were: pulp density 10%, time 0.5h, temperature 110?C, NH3NH2HSO4 3.25 g/10g, H2SO4 2.0% (v/v) for 96.9% Mn, 85.25% Cu, 92.58% Ni and 76.5% Co extractions. More than 92% Mn could be leached from different types of ores by varying amount of reductant and acid concentration at 35?C. Depending on Mn content 1.0 to 1.2 times stochiometric amount of reductant and 1.5 to 1.8 times sulphuric acid were required for >92% Mn extraction.


2018 ◽  
Vol 14 (1) ◽  
pp. 128-135
Author(s):  
Mohammed Y. Eisa ◽  
Basma A. Abdulmajeed ◽  
C. K. Hawee

     In the present work, a kinetic study was performed to the extraction of phosphate from Iraqi Akashat phosphate ore using organic acid. Leaching was studied using lactic acid for the separation of calcareous materials (mainly calcite). Reaction conditions were 2% by weight acid concentration and 5ml/gm of acid volume to ore weight ratio. Reaction time was taken in the range 2 to 30 minutes (step 2 minutes) to determine the reaction rate constant k based on the change in calcite concentration. To determine value of activation energy when reaction temperature is varied from 25 to 65 , another investigation was accomplished. Through the kinetic data, it was found that selective leaching was controlled by surface chemical reaction. The study showed that the reaction kinetics was specifically described by the shrinking core model (SCM). Regression analyses gave values of activation energy (Ea) and Arrhenius constant (ko) as 40.108 KJ/mole and (2.256 103 sec-1) respectively.


2017 ◽  
Vol 14 (6) ◽  
pp. 883-903 ◽  
Author(s):  
Boppudi Hari Babu ◽  
Gandavaram Syam Prasad ◽  
Chamarthi Naga Raju ◽  
Mandava Venkata Basaveswara Rao

Background: Michaelis–Arbuzov reaction has played a key role for the synthesis of dialkyl or diaryl phosphonates by reacting various alkyl or aryl halides with trialkyl or triaryl phosphite. This reaction is very versatile in the formation of P-C bond from the reaction of aliphatic halides with phosphinites or phosphites to yield phosphonates, phosphinates, phosphine oxides. The Arbuzov reaction developed some methodologies, possible mechanistic pathways, selectivity, potential applications and biologically active various phosphonates. Objective: The synthesis of phosphonates via Michaelis–Arbuzov reaction with many new and fascinating methodologies were developed and disclosed in the literature, and these are explored in this review. Conclusion: This review has discussed past developments and vast potential applications of Arbuzov reaction in the synthesis of organophosphonates. As presented in this review, various synthetic methodologies were developed to prepare a large variety of phosphonates. Improvements in the reaction conditions of Lewis-acid mediated Arbuzov rearrangement as well as the development of MW-assisted Arbuzov rearrangement were discussed. Finally, to achieve high selectivities and yields, fine-tuning of reaction conditions including solvent type, temperature, and optimal reaction times to be considered.


2020 ◽  
Vol 3 (1) ◽  
pp. 27
Author(s):  
Raúl Eduardo Gordillo-Cruz ◽  
Liliana Gonzalez-Reyes ◽  
Milton Coporo-Reyes ◽  
Nieves Zavala-Segovia ◽  
Bernardo A. Frontana-Uribe ◽  
...  

An array of 2,4-disubstituted thiazolines was obtained through Asinger reaction approach from the straightforward treatment of diverse aldehydes/ketones with 1-mercaptopropan-2-one, in the presence of NH3 assisted by microwave irradiation, displaying similar and sometimes higher yields, as well as shorter reaction times that traditional Asinger reaction conditions at room and lower temperatures.


2010 ◽  
Vol 65 (2) ◽  
pp. 197-202 ◽  
Author(s):  
Boja Poojary ◽  
Lim Hee-Jong

Ring-opening addition reactions of 1-tert-butoxycarbonyl-3,4-epoxypiperidine leading to the formation of the corresponding regioisomeric trans-β -aminoalcohols were carried out with three different types of amine nucleophiles under different reaction conditions with a view to study the reactivity and regioselectivity.


2010 ◽  
Vol 49 (3) ◽  
pp. 219-226 ◽  
Author(s):  
F. R. Carrillo-Pedroza ◽  
M. A. Sánchez-Castillo ◽  
M. J. Soria-Aguilar ◽  
A. Martínez-Luévanos ◽  
E. C. Gutiérrez

Author(s):  
Imane Aarab ◽  
Mohammed Derqaoui ◽  
Khalid El Amari ◽  
Abdelrani Yaacoubi ◽  
Abdelmoughit Abidi ◽  
...  
Keyword(s):  

2011 ◽  
Vol 7 ◽  
pp. 1164-1172 ◽  
Author(s):  
Sukhdeep Singh ◽  
J Michael Köhler ◽  
Andreas Schober ◽  
G Alexander Groß

The Eschenmoser coupling is a useful carbon–carbon bond forming reaction which has been used in various different synthesis strategies. The reaction proceeds smoothly if S-alkylated ternary thioamides or thiolactames are used. In the case of S-alkylated secondary thioamides or thiolactames, the Eschenmoser coupling needs prolonged reaction times and elevated temperatures to deliver valuable yields. We have used a flow chemistry system to promote the Eschenmoser coupling under enhanced reaction conditions in order to convert the demanding precursors such as S-alkylated secondary thioamides and thiolactames in an efficient way. Under pressurized reaction conditions at about 220 °C, the desired Eschenmoser coupling products were obtained within 70 s residence time. The reaction kinetics was investigated and 15 examples of different building block combinations are given.


2018 ◽  
Vol 73 (9) ◽  
pp. 641-645 ◽  
Author(s):  
Sepehr Sadegh-Samiei ◽  
Shahrzad Abdolmohammadi

AbstractA novel and efficient synthesis of eight 5-aryl-1,3-dimethyl-2,4-dioxo-1,2,3,4,5,8-hexahydropyrido[2,3-d]pyrimidine-7-carboxylic acids using a TiO2/SiO2 nanocomposite with a molar ratio of 1:1 as a recyclable heterogeneous catalyst is described. The desired products, five of which are new, are formed in short reaction times (2–3 h) with high to excellent yields (94%–98%) under very moderate reaction conditions (room temperature, aqueous media).


Sign in / Sign up

Export Citation Format

Share Document