scholarly journals Experimental Study on Flexural Fatigue Properties of Reinforced Concrete Beams after Salt Freezing

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Jianxi Yang ◽  
Tianmei Zhang ◽  
Quansheng Sun

In order to study the fatigue behavior decay law of reinforced concrete structures in cold region under the action of chlorine salt and freeze-thaw, 150-time water freeze-thaw and salt freeze-thaw cycles of reinforced concrete beams were carried out by the quick freezing method, and then the fatigue properties of the test beams were obtained by the four-point bending fatigue test. The fatigue life of the test beam without freeze-thaw is 1,074,282 times, and the fatigue life of the test beam after freeze-thaw is reduced; the minimum fatigue life of fatigue failure is 493,972. The test results show that the residual deflection of the test beam is similar to the relative dynamic elastic modulus, which accords with the damage and failure mechanism of concrete, and the growth rate of residual deflection accords with the law of the block model. The fatigue damage model of reinforced concrete specimens is established, the nonlinear fitting of the damage model is carried out according to the test data, the fitting correlation coefficient is more than 0.98, which indicates that the model can better reflect the damage degree of concrete, and the method of predicting the life of in-service concrete beam is put forward in combination with the concrete damage model.

2003 ◽  
Vol 30 (6) ◽  
pp. 1081-1088 ◽  
Author(s):  
Mark F Green ◽  
Aaron J.S Dent ◽  
Luke A Bisby

Externally bonded fibre reinforced polymer (FRP) plates and sheets for strengthening and rehabilitating existing reinforced concrete structures have recently received a great deal of attention within the civil engineering community. Many tests have shown the benefits of FRP, but more information is required on their behaviour in cold regions. Twenty-seven small-scale concrete beams (100 mm × 150 mm × 1220 mm) were strengthened with FRP in flexure (and in some cases also in shear), subjected to up to 200 freeze–thaw cycles, and tested to failure in four-point bending. Test results were compared with those predicted by theoretical models and reasonable agreement between the tests and the models was obtained. Current design guidelines for FRP-strengthened beams were compared against the test data and were found to be adequate for the artificially aged beams. The test data also indicated that no significant damage to the glass or carbon FRP-strengthened concrete beams had occurred because of freeze–thaw cycling.Key words: concrete, rehabilitation, fibre reinforced polymers, FRP, beams, freeze–thaw, cold region engineering, flexure, external strengthening.


2011 ◽  
Vol 255-260 ◽  
pp. 504-508
Author(s):  
Li Song ◽  
Zhi Wu Yu

The behavior of materials under repeated loading has been examined, but extended studies are more and more needed especially for damaged reinforced structures such as bridges, where high-cycle fatigue phenomena and corrosion can be significant. In the present paper, a theoretical model based on fatigue performance of materials and stress analysis for cross-section is proposed in order to analyze the fatigue damage of corroded reinforced concrete beams under repeated loads. Further, fatigue life is predicted by applying this method, and the method is evaluated by test results.


2016 ◽  
Vol 9 (2) ◽  
pp. 153-191
Author(s):  
W. M. Pereira Junior ◽  
D. L. Araújo ◽  
J. J. C. Pituba

ABSTRACT This work deals with numerical modeling of the mechanical behavior of steel-fiber-reinforced concrete beams using a constitutive model based on damage mechanics. Initially, the formulation of the damage model is presented. The concrete is assumed to be an initial elastic isotropic medium presenting anisotropy, permanent strains, and bimodularity induced by damage evolution. In order to take into account the contribution of the steel fiber to the mechanical behavior of the media, a homogenization procedure is employed. Finally, numerical analyses of steel-fiber-reinforced concrete beams submitted to bending loading are performed in order to show the good performance of the model and its potential.


2015 ◽  
Vol 105 (26) ◽  
pp. 1-8
Author(s):  
Yafei Ma ◽  
Lei Wang ◽  
Jianren Zhang ◽  
Yongming Liu

Sign in / Sign up

Export Citation Format

Share Document