scholarly journals A Novel Distribution and Optimization Procedure of Boundary Conditions to Enhance the Classical Perturbation Method Applied to Solve Some Relevant Heat Problems

2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
U. Filobello-Nino ◽  
H. Vazquez-Leal ◽  
M. A. Fariborzi Araghi ◽  
J. Huerta-Chua ◽  
M. A. Sandoval-Hernandez ◽  
...  

This work introduces a novel modification of classical perturbation method (PM), denominated Optimized Distribution of Boundary Conditions Perturbation Method (ODBCPM) with the purpose to improve the performance of PM in the solution of ordinary differential equations (ODES). We will see that the main proposal of ODBCPM rests above all in the redistribution and optimization of the boundary conditions of the problem to be solved among the iterations of the proposed method. The solution of a couple of heat relevant problems indicates the potentiality of ODBCPM even for the case of large values of the perturbative parameter.

2002 ◽  
Vol 9 (2) ◽  
pp. 287-294
Author(s):  
Tadeusz Jankowski

Abstract The method of lower and upper solutions combined with the monotone iterative technique is used for ordinary differential equations with nonlinear boundary conditions. Some existence results are formulated for such problems.


2021 ◽  
Vol 11 (11) ◽  
pp. 4798
Author(s):  
Hari Mohan Srivastava ◽  
Sotiris K. Ntouyas ◽  
Mona Alsulami ◽  
Ahmed Alsaedi ◽  
Bashir Ahmad

The main object of this paper is to investigate the existence of solutions for a self-adjoint coupled system of nonlinear second-order ordinary differential equations equipped with nonlocal multi-point coupled boundary conditions on an arbitrary domain. We apply the Leray–Schauder alternative, the Schauder fixed point theorem and the Banach contraction mapping principle in order to derive the main results, which are then well-illustrated with the aid of several examples. Some potential directions for related further researches are also indicated.


Author(s):  
W. T. van Horssen

Abstract In this paper the fundamental concept (due to Euler, 1734) of how to make a first order ordinary differential equation exact by means of integrating factors, is extended to n-th order (n ≥ 2) ordinary differential equations and to systems of first order ordinary differential equations. For new classes of differential equations first integrals or complete solutions can be constructed. Also a perturbation method based on integrating factors can be developed. To show how this perturbation method works the method is applied to the well-known Van der Pol equation.


2008 ◽  
Vol 63 (1-2) ◽  
pp. 19-23 ◽  
Author(s):  
Mohammad Taghi Darvishi ◽  
Farzad Khani

We propose He’s homotopy perturbation method (HPM) to solve stiff systems of ordinary differential equations. This method is very simple to be implemented. HPM is employed to compute an approximation or analytical solution of the stiff systems of linear and nonlinear ordinary differential equations.


1949 ◽  
Vol 1 (4) ◽  
pp. 379-396 ◽  
Author(s):  
G. F. D. Duff

The eigenfunctions of a boundary value problem are characterized by two quite distinct properties. They are solutions of ordinary differential equations, and they satisfy prescribed boundary conditions. It is a definite advantage to combine these two requirements into a single problem expressed by a unified formula. The use of integral equations is an example in point. The subject of this paper, namely the Schrödinger-Infeld Factorization Method, which is applicable to certain restricted. Sturm-Liouville problems, is based upon another combination of the two properties. The Factorization Method prescribes a manufacturing process.


Sign in / Sign up

Export Citation Format

Share Document