scholarly journals Fault-Tolerant Resolvability in Some Classes of Line Graphs

2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Xuan Guo ◽  
Muhammad Faheem ◽  
Zohaib Zahid ◽  
Waqas Nazeer ◽  
Jingjng Li

Fault tolerance is the characteristic of a system that permits it to carry on its intended operations in case of the failure of one of its units. Such a system is known as the fault-tolerant self-stable system. In graph theory, if we remove any vertex in a resolving set, then the resulting set is also a resolving set, called the fault-tolerant resolving set, and its minimum cardinality is called the fault-tolerant metric dimension. In this paper, we determine the fault-tolerant resolvability in line graphs. As a main result, we computed the fault-tolerant metric dimension of line graphs of necklace and prism graphs (2010 Mathematics Subject Classification: 05C78).

Mathematics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 124
Author(s):  
Laxman Saha ◽  
Rupen Lama ◽  
Kalishankar Tiwary ◽  
Kinkar Chandra Das ◽  
Yilun Shang

Let G be a connected graph with vertex set V(G) and d(u,v) be the distance between the vertices u and v. A set of vertices S={s1,s2,…,sk}⊂V(G) is called a resolving set for G if, for any two distinct vertices u,v∈V(G), there is a vertex si∈S such that d(u,si)≠d(v,si). A resolving set S for G is fault-tolerant if S\{x} is also a resolving set, for each x in S, and the fault-tolerant metric dimension of G, denoted by β′(G), is the minimum cardinality of such a set. The paper of Basak et al. on fault-tolerant metric dimension of circulant graphs Cn(1,2,3) has determined the exact value of β′(Cn(1,2,3)). In this article, we extend the results of Basak et al. to the graph Cn(1,2,3,4) and obtain the exact value of β′(Cn(1,2,3,4)) for all n≥22.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Zhi-Bo Zheng ◽  
Ashfaq Ahmad ◽  
Zaffar Hussain ◽  
Mobeen Munir ◽  
Muhammad Imran Qureshi ◽  
...  

For a graph G , an ordered set S ⊆ V G is called the resolving set of G , if the vector of distances to the vertices in S is distinct for every v ∈ V G . The minimum cardinality of S is termed as the metric dimension of G . S is called a fault-tolerant resolving set (FTRS) for G , if S \ v is still the resolving set ∀ v ∈ V G . The minimum cardinality of such a set is the fault-tolerant metric dimension (FTMD) of G . Due to enormous application in science such as mathematics and computer, the notion of the resolving set is being widely studied. In the present article, we focus on determining the FTMD of a generalized wheel graph. Moreover, a formula is developed for FTMD of a wheel and generalized wheels. Recently, some bounds of the FTMD of some of the convex polytopes have been computed, but here we come up with the exact values of the FTMD of two families of convex polytopes denoted as D k for k ≥ 4 and Q k for k ≥ 6 . We prove that these families of convex polytopes have constant FTMD. This brings us to pose a natural open problem about the existence of a polytope having nonconstant FTMD.


Author(s):  
Narjes Seyedi ◽  
Hamid Reza Maimani

A set $W$ of vertices in a graph $G$ is called a resolving setfor $G$ if for every pair of distinct vertices $u$ and $v$ of $G$ there exists a vertex $w \in W$ such that the distance between $u$ and $w$ is different from the distance between $v$ and $w$. The cardinality of a minimum resolving set is called the metric dimension of $G$, denoted by $\beta(G)$. A resolving set $W'$ for $G$ is fault-tolerant if $W'\setminus \left\lbrace w\right\rbrace $ for each $w$ in $W'$, is also a resolving set and the fault-tolerant metric dimension of $G$ is the minimum cardinality of such a set, denoted by $\beta'(G)$. The circulant graph is a graph with vertex set $\mathbb{Z}_{n}$, an additive group of integers modulo $n$, and two vertices labeled $i$ and $j$ adjacent if and only if $i -j \left( mod \ n \right)  \in C$, where $C \in \mathbb{Z}_{n}$ has the property that $C=-C$ and $0 \notin C$. The circulant graph is denoted by $X_{n,\bigtriangleup}$ where $\bigtriangleup = \vert C\vert$. In this paper, we study the fault-tolerant metric dimension of a family of circulant graphs $X_{n,3}$ with connection set $C=\lbrace 1,\dfrac{n}{2},n-1\rbrace$ and circulant graphs $X_{n,4}$ with connection set $C=\lbrace \pm 1,\pm 2\rbrace$.


Author(s):  
Liliek Susilowati ◽  
Imroatus Sa’adah ◽  
Utami Dyah Purwati

Some concepts in graph theory are resolving set, dominating set, and dominant metric dimension. A resolving set of a connected graph [Formula: see text] is the ordered set [Formula: see text] such that every pair of two vertices [Formula: see text] has the different representation with respect to [Formula: see text]. A Dominating set of [Formula: see text] is the subset [Formula: see text] such that for every vertex [Formula: see text] in [Formula: see text] is adjacent to at least one vertex in [Formula: see text]. A dominant resolving set of [Formula: see text] is an ordered set [Formula: see text] such that [Formula: see text] is a resolving set and a dominating set of [Formula: see text]. The minimum cardinality of a dominant resolving set is called a dominant metric dimension of [Formula: see text], denoted by [Formula: see text]. In this paper, we determine the dominant metric dimension of the joint product graphs.


10.37236/302 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Carmen Hernando ◽  
Mercè Mora ◽  
Ignacio M. Pelayo ◽  
Carlos Seara ◽  
David R. Wood

A set of vertices $S$ resolves a connected graph $G$ if every vertex is uniquely determined by its vector of distances to the vertices in $S$. The metric dimension of $G$ is the minimum cardinality of a resolving set of $G$. Let ${\cal G}_{\beta,D}$ be the set of graphs with metric dimension $\beta$ and diameter $D$. It is well-known that the minimum order of a graph in ${\cal G}_{\beta,D}$ is exactly $\beta+D$. The first contribution of this paper is to characterise the graphs in ${\cal G}_{\beta,D}$ with order $\beta+D$ for all values of $\beta$ and $D$. Such a characterisation was previously only known for $D\leq2$ or $\beta\leq1$. The second contribution is to determine the maximum order of a graph in ${\cal G}_{\beta,D}$ for all values of $D$ and $\beta$. Only a weak upper bound was previously known.


Mathematics ◽  
2018 ◽  
Vol 6 (10) ◽  
pp. 191 ◽  
Author(s):  
Shahid Imran ◽  
Muhammad Siddiqui ◽  
Muhammad Imran ◽  
Muhammad Hussain

Let G = (V, E) be a connected graph and d(x, y) be the distance between the vertices x and y in G. A set of vertices W resolves a graph G if every vertex is uniquely determined by its vector of distances to the vertices in W. A metric dimension of G is the minimum cardinality of a resolving set of G and is denoted by dim(G). In this paper, Cycle, Path, Harary graphs and their rooted product as well as their connectivity are studied and their metric dimension is calculated. It is proven that metric dimension of some graphs is unbounded while the other graphs are constant, having three or four dimensions in certain cases.


Symmetry ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 300 ◽  
Author(s):  
Zafar Hussain ◽  
Mobeen Munir ◽  
Maqbool Chaudhary ◽  
Shin Kang

Concepts of resolving set and metric basis has enjoyed a lot of success because of multi-purpose applications both in computer and mathematical sciences. For a connected graph G(V,E) a subset W of V(G) is a resolving set for G if every two vertices of G have distinct representations with respect to W. A resolving set of minimum cardinality is called a metric basis for graph G and this minimum cardinality is known as metric dimension of G. Boron nanotubes with different lattice structures, radii and chirality’s have attracted attention due to their transport properties, electronic structure and structural stability. In the present article, we compute the metric dimension and metric basis of 2D lattices of alpha-boron nanotubes.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Ali Ahmad ◽  
Sadia Husain ◽  
Muhammad Azeem ◽  
Kashif Elahi ◽  
M. K. Siddiqui

In chemistry, graphs are commonly used to show the structure of chemical compounds, with nodes and edges representing the atom and bond types, respectively. Edge resolving set λ e is an ordered subset of nodes of a graph C , in which each edge of C is distinctively determined by its distance vector to the nodes in λ . The cardinality of a minimum edge resolving set is called the edge metric dimension of C . An edge resolving set L e , f of C is fault-tolerant if λ e , f ∖ b is also an edge resolving set, for every b in λ e , f . Resolving set allows obtaining a unique representation for chemical structures. In particular, they were used in pharmaceutical research for discovering patterns common to a variety of drugs. In this paper, we determine the exact edge metric and fault-tolerant edge metric dimension of benzenoid tripod structure and proved that both parameters are constant.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Jianxin Wei ◽  
Syed Ahtsham Ul Haq Bokhary ◽  
Ghulam Abbas ◽  
Muhammad Imran

Circulant networks form a very important and widely explored class of graphs due to their interesting and wide-range applications in networking, facility location problems, and their symmetric properties. A resolving set is a subset of vertices of a connected graph such that each vertex of the graph is determined uniquely by its distances to that set. A resolving set of the graph that has the minimum cardinality is called the basis of the graph, and the number of elements in the basis is called the metric dimension of the graph. In this paper, the metric dimension is computed for the graph Gn1,k constructed from the circulant graph Cn1,k by subdividing its edges. We have shown that, for k=2, Gn1,k has an unbounded metric dimension, and for k=3 and 4, Gn1,k has a bounded metric dimension.


2021 ◽  
Vol 40 (1) ◽  
pp. 1129-1135
Author(s):  
Kamran Azhar ◽  
Sohail Zafar ◽  
Agha Kashif ◽  
Zohaib Zahid

Fault-tolerant resolving partition is natural extension of resolving partitions which have many applications in different areas of computer sciences for example sensor networking, intelligent systems, optimization and robot navigation. For a nontrivial connected graph G (V (G) , E (G)), the partition representation of vertex v with respect to an ordered partition Π = {Si : 1 ≤ i ≤ k} of V (G) is the k-vector r ( v | Π ) = ( d ( v , S i ) ) i = 1 k , where, d (v, Si) = min {d (v, x) |x ∈ Si}, for i ∈ {1, 2, …, k}. A partition Π is said to be fault-tolerant partition resolving set of G if r (u|Π) and r (v|Π) differ by at least two places for all u ≠ v ∈ V (G). A fault-tolerant partition resolving set of minimum cardinality is called the fault-tolerant partition basis of G and its cardinality the fault-tolerant partition dimension of G denoted by P ( G ) . In this article, we will compute fault-tolerant partition dimension of families of tadpole and necklace graphs.


Sign in / Sign up

Export Citation Format

Share Document