scholarly journals Complexity Analysis of a 3-Player Game with Bounded Rationality Participating in Nitrogen Emission Reduction

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Jixiang Zhang ◽  
Xuan Xi

In this paper, a decision-making competition game model concerning governments, agricultural enterprises, and the public, all of which participate in the reduction of nitrogen emissions in the watersheds, is established based on bounded rationality. First, the stability conditions of the equilibrium points in the system are discussed, and the stable region of the Nash equilibrium is determined. Then, the bifurcation diagram, maximal Lyapunov exponent, strange attractor, and sensitive dependence on the initial conditions are shown through numerical simulations. The research shows that the adjustment speed of three players’ decisions may alter the stability of the Nash equilibrium point and lead to chaos in the system. Among these decisions, a government’s decision has the largest effect on the system. In addition, we find that some parameters will affect the stability of the system; when the parameters become beneficial for enterprises to reduce nitrogen emissions, the increase in the parameters can help control the chaotic market. Finally, the delay feedback control method is used to successfully control the chaos in the system and stabilize it at the Nash equilibrium point. The research of this paper is of great significance to the environmental governance decisions and nitrogen reduction management.

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
A. A. Elsadany ◽  
A. E. Matouk

The delay Cournot duopoly game is studied. Dynamical behaviors of the game are studied. Equilibrium points and their stability are studied. The results show that the delayed system has the same Nash equilibrium point and the delay can increase the local stability region.


2011 ◽  
Vol 21 (11) ◽  
pp. 3171-3179 ◽  
Author(s):  
LINGLING MU ◽  
PING LIU ◽  
YANYAN LI ◽  
JINZHU ZHANG

In this paper, a real estate game model with nonlinear demand function is proposed. And an analysis of the game's local stability is carried out. It is shown that the stability of Nash equilibrium point is lost through period-doubling bifurcation as some parameters are varied. With numerical simulations method, the results of bifurcation diagrams, maximal Lyapunov exponents and strange attractors are presented. It is found that the chaotic behavior of the model has been stabilized on the Nash equilibrium point by using of nonlinear feedback control method.


2003 ◽  
Vol 05 (04) ◽  
pp. 375-384 ◽  
Author(s):  
GRAZIANO PIERI ◽  
ANNA TORRE

We give a suitable definition of Hadamard well-posedness for Nash equilibria of a game, that is, the stability of Nash equilibrium point with respect to perturbations of payoff functions. Our definition generalizes the analogous notion for minimum problems. For a game with continuous payoff functions, we restrict ourselves to Hadamard well-posedness with respect to uniform convergence and compare this notion with Tykhonov well-posedness of the same game. The main results are: Hadamard implies Tykhonov well-posedness and the converse is true if the payoff functions are bounded. For a zero-sum game the two notions are equivalent.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Lian Shi ◽  
Yun Le ◽  
Zhaohan Sheng

The classical Stackelberg game is extended to boundedly rational price Stackelberg game, and the dynamic duopoly game model is described in detail. By using the theory of bifurcation of dynamical systems, the existence and stability of the equilibrium points of this model are studied. And some comparisons with Bertrand game with bounded rationality are also performed. Stable region, bifurcation diagram, The Largest Lyapunov exponent, strange attractor, and sensitive dependence on initial conditions are used to show complex dynamic behavior. The results of theoretical and numerical analysis show that the stability of the price Stackelberg duopoly game with boundedly rational players is only relevant to the speed of price adjustment of the leader and not relevant to the follower’s. This is different from the classical Cournot and Bertrand duopoly game with bounded rationality. And the speed of price adjustment of the boundedly rational leader has a destabilizing effect on this model.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Qi-Qing Song ◽  
Wei-li Zhang ◽  
Yi-Rong Jiang ◽  
Juan Geng

AbstractIn a homogenous product market, customers’ different demand elasticities may lead to different prices. This study examined price discrimination’s effect on equilibrium points in Cournot duopoly games by assuming that each firm charges K prices and adjusts its strategies based on bounded rationality. In consideration of price discrimination, two discrete dynamic game systems with 2K variables were introduced for players with homogenous or heterogenous expectations. The stability of the Nash equilibrium point was found to be independent of price discrimination. Given price discrimination, the stability of boundary stationary points for the system with homogenous players is different from that for the system with heterogenous players. Numerical simulations verified the critical point for the system with homogenous players from being stable to its bifurcation.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Jia Liu ◽  
Guoliang Liu ◽  
Na Li ◽  
Hongliang Xu

This paper considers a dynamic duopoly Cournot model based on nonlinear cost functions. The model with heterogeneous players and the spillover effect is applied to the Chinese fixed broadband telecom market. We have studied its dynamic game process. The existence and stability of the Nash equilibrium of the system have been discussed. Simulations are used to show the complex dynamical behaviors of the system. The results illustrate that altering the relevant parameters of system can affect the stability of the Nash equilibrium point and cause chaos to occur. With the use of the delay feedback control method, the chaotic behavior of the model has been stabilized at the Nash equilibrium point. The analysis and results will be of great importance for the Chinese fixed broadband telecom market.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
S. S. Askar ◽  
A. Al-khedhairi

Many researchers have used quadratic utility function to study its influences on economic games with product differentiation. Such games include Cournot, Bertrand, and a mixed-type game called Cournot-Bertrand. Within this paper, a cubic utility function that is derived from a constant elasticity of substitution production function (CES) is introduced. This cubic function is more desirable than the quadratic one besides its amenability to efficiency analysis. Based on that utility a two-dimensional Cournot duopoly game with horizontal product differentiation is modeled using a discrete time scale. Two different types of games are studied in this paper. In the first game, firms are updating their output production using the traditional bounded rationality approach. In the second game, firms adopt Puu’s mechanism to update their productions. Puu’s mechanism does not require any information about the profit function; instead it needs both firms to know their production and their profits in the past time periods. In both scenarios, an explicit form for the Nash equilibrium point is obtained under certain conditions. The stability analysis of Nash point is considered. Furthermore, some numerical simulations are carried out to confirm the chaotic behavior of Nash equilibrium point. This analysis includes bifurcation, attractor, maximum Lyapunov exponent, and sensitivity to initial conditions.


2014 ◽  
Vol 19 (1) ◽  
pp. 118-131 ◽  
Author(s):  
Lingrui Zhao ◽  
Jixiang Zhang

In this paper, a price competition model with two heterogeneous players participating in carbon emission trading is formulated. The stable conditions of the equilibrium points of this system are discussed. Numerical simulations are used to show bifurcation diagrams, strange attractors, and sensitive dependence on initial conditions. We observe that the speed of adjustment of bounded rational player may change the stability of the Nash equilibrium and cause the system to behave chaotically. In addition, we find that the price of emission permits plays an important role in the duopoly game. The chaotic behavior of the system has been stabilized on the Nash equilibrium point by applying delay feedback control method.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Jing Wang ◽  
Zhenhua Bao ◽  
Junqing Huang ◽  
Yujing Song

This article investigates the dynamics of a mixed triopoly game in which a state-owned public firm competes against two private firms. In this game, the public firm and private firms are considered to be boundedly rational and naive, respectively. Based on both quantity and price competition, the game’s equilibrium points are calculated, and then the local stability of boundary points and the Nash equilibrium points is analyzed. Numerical simulations are presented to display the dynamic behaviors including bifurcation diagrams, maximal Lyapunov exponent, and sensitive dependence on initial conditions. The chaotic behavior of the two models has been stabilized on the Nash equilibrium point by using the delay feedback control method. The thresholds under price and quantity competition are also compared.


2021 ◽  
pp. 2150021
Author(s):  
Ajay Kumar Bhurjee ◽  
Vinay Yadav

Game theory-based models are widely used to solve multiple competitive problems such as oligopolistic competitions, marketing of new products, promotion of existing products competitions, and election presage. The payoffs of these competitive models have been conventionally considered as deterministic. However, these payoffs have ambiguity due to the uncertainty in the data sets. Interval analysis-based approaches are found to be efficient to tackle such uncertainty in data sets. In these approaches, the payoffs of the game model lie in some closed interval, which are estimated by previous information. The present paper considers a multiple player game model in which payoffs are uncertain and varies in a closed intervals. The necessary and sufficient conditions are explained to discuss the existence of Nash equilibrium point of such game models. Moreover, Nash equilibrium point of the model is obtained by solving a crisp bi-linear optimization problem. The developed methodology is further applied for obtaining the possible optimal strategy to win the parliament election presage problem.


Sign in / Sign up

Export Citation Format

Share Document