COMPLEXITY OF A REAL ESTATE GAME MODEL WITH A NONLINEAR DEMAND FUNCTION

2011 ◽  
Vol 21 (11) ◽  
pp. 3171-3179 ◽  
Author(s):  
LINGLING MU ◽  
PING LIU ◽  
YANYAN LI ◽  
JINZHU ZHANG

In this paper, a real estate game model with nonlinear demand function is proposed. And an analysis of the game's local stability is carried out. It is shown that the stability of Nash equilibrium point is lost through period-doubling bifurcation as some parameters are varied. With numerical simulations method, the results of bifurcation diagrams, maximal Lyapunov exponents and strange attractors are presented. It is found that the chaotic behavior of the model has been stabilized on the Nash equilibrium point by using of nonlinear feedback control method.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Jia Liu ◽  
Guoliang Liu ◽  
Na Li ◽  
Hongliang Xu

This paper considers a dynamic duopoly Cournot model based on nonlinear cost functions. The model with heterogeneous players and the spillover effect is applied to the Chinese fixed broadband telecom market. We have studied its dynamic game process. The existence and stability of the Nash equilibrium of the system have been discussed. Simulations are used to show the complex dynamical behaviors of the system. The results illustrate that altering the relevant parameters of system can affect the stability of the Nash equilibrium point and cause chaos to occur. With the use of the delay feedback control method, the chaotic behavior of the model has been stabilized at the Nash equilibrium point. The analysis and results will be of great importance for the Chinese fixed broadband telecom market.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
H. N. Agiza ◽  
A. A. Elsadany ◽  
M. M. El-Dessoky

This paper presents a new Cournot duopoly game. The main advantage of this game is that the outputs are nonnegative for all times. We investigate the complexity of the corresponding dynamical behaviors of the game such as stability and bifurcations. Computer simulations will be used to confirm our theoretical results. It is found that the chaotic behavior of the game has been stabilized on the Nash equilibrium point by using delay feedback control method.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Jixiang Zhang ◽  
Xuan Xi

In this paper, a decision-making competition game model concerning governments, agricultural enterprises, and the public, all of which participate in the reduction of nitrogen emissions in the watersheds, is established based on bounded rationality. First, the stability conditions of the equilibrium points in the system are discussed, and the stable region of the Nash equilibrium is determined. Then, the bifurcation diagram, maximal Lyapunov exponent, strange attractor, and sensitive dependence on the initial conditions are shown through numerical simulations. The research shows that the adjustment speed of three players’ decisions may alter the stability of the Nash equilibrium point and lead to chaos in the system. Among these decisions, a government’s decision has the largest effect on the system. In addition, we find that some parameters will affect the stability of the system; when the parameters become beneficial for enterprises to reduce nitrogen emissions, the increase in the parameters can help control the chaotic market. Finally, the delay feedback control method is used to successfully control the chaos in the system and stabilize it at the Nash equilibrium point. The research of this paper is of great significance to the environmental governance decisions and nitrogen reduction management.


2021 ◽  
pp. 2150021
Author(s):  
Ajay Kumar Bhurjee ◽  
Vinay Yadav

Game theory-based models are widely used to solve multiple competitive problems such as oligopolistic competitions, marketing of new products, promotion of existing products competitions, and election presage. The payoffs of these competitive models have been conventionally considered as deterministic. However, these payoffs have ambiguity due to the uncertainty in the data sets. Interval analysis-based approaches are found to be efficient to tackle such uncertainty in data sets. In these approaches, the payoffs of the game model lie in some closed interval, which are estimated by previous information. The present paper considers a multiple player game model in which payoffs are uncertain and varies in a closed intervals. The necessary and sufficient conditions are explained to discuss the existence of Nash equilibrium point of such game models. Moreover, Nash equilibrium point of the model is obtained by solving a crisp bi-linear optimization problem. The developed methodology is further applied for obtaining the possible optimal strategy to win the parliament election presage problem.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Hongliang Tu ◽  
Xueli Zhan ◽  
Xiaobing Mao

We study a dynamic research and development two-stage input competition game model in the Bertrand duopoly oligopoly market with spillover effects on cost reduction. We investigate the stability of the Nash equilibrium point and local stable conditions and stability region of the Nash equilibrium point by the bifurcation theory. The complex dynamic behaviors of the system are shown by numerical simulations. It is demonstrated that chaos occurs for a range of managerial policies, and the associated unpredictability is solely due to the dynamics of the interaction. We show that the straight line stabilization method is the appropriate management measure to control the chaos.


Symmetry ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 118
Author(s):  
Qingfeng Zhu ◽  
Yufeng Shi ◽  
Jiaqiang Wen ◽  
Hui Zhang

This paper is concerned with a type of time-symmetric stochastic system, namely the so-called forward–backward doubly stochastic differential equations (FBDSDEs), in which the forward equations are delayed doubly stochastic differential equations (SDEs) and the backward equations are anticipated backward doubly SDEs. Under some monotonicity assumptions, the existence and uniqueness of measurable solutions to FBDSDEs are obtained. The future development of many processes depends on both their current state and historical state, and these processes can usually be represented by stochastic differential systems with time delay. Therefore, a class of nonzero sum differential game for doubly stochastic systems with time delay is studied in this paper. A necessary condition for the open-loop Nash equilibrium point of the Pontriagin-type maximum principle are established, and a sufficient condition for the Nash equilibrium point is obtained. Furthermore, the above results are applied to the study of nonzero sum differential games for linear quadratic backward doubly stochastic systems with delay. Based on the solution of FBDSDEs, an explicit expression of Nash equilibrium points for such game problems is established.


2014 ◽  
Vol 1008-1009 ◽  
pp. 1395-1398
Author(s):  
Wei Zhuo Ji

A dynamic repeated model has been established in electric power Triopoly. The chaos and density cycling of the nonlinear dynamic model are investigated in detail. The nonlinear feedback chaos control method is successfully applied to the dynamic repeated game model.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
A. A. Elsadany ◽  
A. E. Matouk

The delay Cournot duopoly game is studied. Dynamical behaviors of the game are studied. Equilibrium points and their stability are studied. The results show that the delayed system has the same Nash equilibrium point and the delay can increase the local stability region.


Sign in / Sign up

Export Citation Format

Share Document