scholarly journals Simulating Study on Mechanical Properties of Rock Wool Board for Thermal Insulation on External Walls

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Xiaoguang Li ◽  
Jinjin Liu ◽  
Xin Fan ◽  
Jinyi Qin ◽  
Rui Zhang ◽  
...  

Rock wool board (RWB) is widely used in construction of exterior insulation worldwide. Fiber diameter, solid volume fraction (SVF), and contact degree among the fibers significantly influence the RWB physical properties. Herein, the effects of these factors on the mechanical properties of RWB were investigated using the GeoDict software. First, the fiberization process resulted in a finer fiber diameter, and the SVF of RWB increased with decreasing pore sizes. In addition, both the fiber diameter and SVF significantly influenced the RWB shear strength. Furthermore, in compliance with the Chinese standards of compression, tensile, and shear strength, the SVF of RWB with a 10.5 μm fiber diameter did not exceed 4.72%, 4.04%, and 5.4%, respectively. The novel method proposed herein can be used for optimizing the RWB manufacturing process.

Alloy Digest ◽  
1978 ◽  
Vol 27 (12) ◽  

Abstract ALUMINUM 2011 is an age-hardenable aluminum-copper alloy to which lead and bismuth are added to make it a free-machining alloy. It has good mechanical properties and was designed primarily for the manufacture of screw-machine products. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fatigue. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Al-32. Producer or source: Various aluminum companies. Originally published October 1955, revised December 1978.


Alloy Digest ◽  
1957 ◽  
Vol 6 (7) ◽  

Abstract ALCAN 350 is a 10% magnesium-aluminum casting alloy having high mechanical properties, excellent machinability, and good corrosion resistance. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive and shear strength as well as fatigue. It also includes information on corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Al-52. Producer or source: Aluminum Company of Canada Ltd.


Alloy Digest ◽  
1971 ◽  
Vol 20 (11) ◽  

Abstract COPPER ALLOY No. 675 is a copper-zinc alloy having excellent mechanical properties and good corrosion resistance. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-244. Producer or source: Brass mills.


Alloy Digest ◽  
1985 ◽  
Vol 34 (5) ◽  

Abstract ALUMINUM 319.0 is a general-purpose foundry alloy that is moderately responsive to heat treatment. It has excellent casting characteristics and good mechanical properties. Among its many uses are crankcases, housings, engine parts, typewriter frames and rear-axle housings. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive and shear strength as well as creep and fatigue. It also includes information on low and high temperature performance as well as casting, heat treating, machining, and joining. Filing Code: Al-256. Producer or source: Various aluminum companies.


Alloy Digest ◽  
2008 ◽  
Vol 57 (3) ◽  

Abstract Ansonia alloy C14500 has unique fabrication properties while maintaining both physical and mechanical properties close to pure copper. The addition of Tellurium makes the alloy free machining. This datasheet provides information on composition, physical properties, hardness, tensile properties, and shear strength. It also includes information on forming, heat treating, machining, and joining. Filing Code: CU-752. Producer or source: Ansonia Copper & Brass Inc.


Alloy Digest ◽  
1965 ◽  
Vol 14 (4) ◽  

Abstract SUPERSTON 40 is an aluminum bronze containing 12% manganese and has good casting properties and excellent mechanical properties. It is recommended for any application where extreme corrosion resistance is required and where weldability is desired, such as propellers and marine equipment. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive and shear strength as well as fracture toughness, creep, and fatigue. It also includes information on corrosion resistance as well as casting, forming, heat treating, and machining. Filing Code: Cu-150. Producer or source: H. Kramer & Company.


Alloy Digest ◽  
1999 ◽  
Vol 48 (12) ◽  

Abstract Kaiser Aluminum Alloy 7049 has high mechanical properties and good machinability. The alloy offers a resistance to stress-corrosion cracking and is typically used in aircraft structural parts. This datasheet provides information on composition, physical properties, hardness, tensile properties, and shear strength as well as fatigue. It also includes information on forming, heat treating, machining, and surface treatment. Filing Code: AL-365. Producer or source: Tennalum, A Division of Kaiser Aluminum.


Alloy Digest ◽  
1999 ◽  
Vol 48 (10) ◽  

Abstract Kaiser Aluminum alloy KA62 (Tennalum alloy KA62) is a lead-free alternative to 6262. It offers good machinability and corrosion resistance and displays good acceptance of coatings (anodize response). It can be used in place of 6262 because its physical and mechanical properties are equivalent to those of 6262 (see Alloy Digest Al-361, September 1999). This datasheet provides information on composition, physical properties, hardness, tensile properties, and shear strength. It also includes information on corrosion resistance as well as forming, heat treating, machining, and surface treatment. Filing Code: AL-362. Producer or source: Tennalum, A Division of Kaiser Aluminum.


Alloy Digest ◽  
1988 ◽  
Vol 37 (11) ◽  

Abstract UNS A96061 is a wrought precipitation-hardenable aluminum alloy having excellent resistance to corrosion and good mechanical properties. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fatigue. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Al-292. Producer or source: Various aluminum companies.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3798
Author(s):  
Meng Sun ◽  
Dong Li ◽  
Yanhua Guo ◽  
Ying Wang ◽  
Yuecheng Dong ◽  
...  

In order to reduce the cost of titanium alloys, a novel low-cost Ti-3Al-5Mo-4Cr-2Zr-1Fe (Ti-35421) titanium alloy was developed. The influence of heat treatment on the microstructure characteristics and mechanical properties of the new alloy was investigated. The results showed that the microstructure of Ti-35421 alloy consists of a lamina primary α phase and a β phase after the solution treatment at the α + β region. After aging treatment, the secondary α phase precipitates in the β matrix. The precipitation of the secondary α phase is closely related to heat treatment parameters—the volume fraction and size of the secondary α phase increase when increasing the solution temperature or aging time. At the same solution temperature and aging time, the secondary α phase became coarser, and the fraction decreased with increasing aging temperature. When Ti-35421 alloy was solution-treated at the α + β region for 1 h with aging surpassing 8 h, the tensile strength, yield strength, elongation and reduction of the area were achieved in a range of 1172.7–1459.0 MPa, 1135.1–1355.5 MPa, 5.2–11.8%, and 7.5–32.5%, respectively. The novel low-cost Ti-35421 alloy maintains mechanical properties and reduces the cost of materials compared with Ti-3Al-5Mo-5V-4Cr-2Zr (Ti-B19) alloy.


Sign in / Sign up

Export Citation Format

Share Document