scholarly journals L -Simulation Functions over b -Metric-Like Spaces and Fractional Hybrid Differential Equations

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Shimaa I. Moustafa ◽  
Ayman Shehata

In this paper, we establish some fixed point results for α q s p -admissible mappings embedded in L -simulation functions in the context of b -metric-like spaces. As an application, we discuss the existence of a unique solution for fractional hybrid differential equation with multipoint boundary conditions via Caputo fractional derivative of order 1 < α ≤ 2 . Some examples and corollaries are also considered to illustrate the obtained results.

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Mohamed A. E. Herzallah ◽  
Dumitru Baleanu

We develop the theory of fractional hybrid differential equations with linear and nonlinear perturbations involving the Caputo fractional derivative of order0<α<1. Using some fixed point theorems we prove the existence of mild solutions for two types of hybrid equations. Examples are given to illustrate the obtained results.


2021 ◽  
Vol 52 ◽  
Author(s):  
Habibulla Akhadkulov ◽  
Fahad Alsharari ◽  
Teh Yuan Ying

In this paper, we prove the existence of a solution of a fractional hybrid differential equation involving the Riemann-Liouville differential and integral operators by utilizing a new version of Kransoselskii-Dhage type fixed-point theorem obtained in [13]. Moreover, we provide an example to support our result.


2021 ◽  
Vol 7 (2) ◽  
pp. 2498-2511
Author(s):  
Qun Dai ◽  
◽  
Shidong Liu

<abstract><p>In this research work, we consider a class of nonlinear fractional integro-differential equations containing Caputo fractional derivative and integral derivative. We discuss the stabilities of Ulam-Hyers, Ulam-Hyers-Rassias, semi-Ulam-Hyers-Rassias for the nonlinear fractional integro-differential equations in terms of weighted space method and Banach fixed-point theorem. After the demonstration of our results, an example is given to illustrate the results we obtained.</p></abstract>


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Youyu Wang ◽  
Yuhan Wu ◽  
Zheng Cao

AbstractIn this work, we establish Lyapunov-type inequalities for the fractional boundary value problems with Caputo–Hadamard fractional derivative subject to multipoint and integral boundary conditions. As far as we know, there is no literature that has studied these problems.


Author(s):  
Chengbo Zhai ◽  
Lifang Wei

AbstractWe study a fractional integro-differential equation subject to multi-point boundary conditions: $$\left\{\begin{array}{l} D^\alpha_{0^+} u(t)+f(t,u(t),Tu(t),Su(t))=b,\ t\in(0,1),\\u(0)=u^\prime(0)=\cdots=u^{(n-2)}(0)=0,\\ D^p_{0^+}u(t)|_{t=1}=\sum\limits_{i=1}^m a_iD^q_{0^+}u(t)|_{t=\xi_i},\end{array}\right.$$where $\alpha\in (n-1,n],\ n\in \textbf{N},\ n\geq 3,\ a_i\geq 0,\ 0<\xi_1<\cdots<\xi_m\leq 1,\ p\in [1,n-2],\ q\in[0,p],b>0$. By utilizing a new fixed point theorem of increasing $\psi-(h,r)-$ concave operators defined on special sets in ordered spaces, we demonstrate existence and uniqueness of solutions for this problem. Besides, it is shown that an iterative sequence can be constructed to approximate the unique solution. Finally, the main result is illustrated with the aid of an example.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
M. A. Barakat ◽  
Ahmed H. Soliman ◽  
Abd-Allah Hyder

We look at fractional Langevin equations (FLEs) with generalized proportional Hadamard–Caputo derivative of different orders. Moreover, nonlocal integrals and nonperiodic boundary conditions are considered in this paper. For the proposed equations, the Hyres–Ulam (HU) stability, existence, and uniqueness (EU) of the solution are defined and investigated. In implementing our results, we rely on two important theories that are Krasnoselskii fixed point theorem and Banach contraction principle. Also, an application example is given to bolster the accuracy of the acquired results.


2021 ◽  
Vol 2 (1) ◽  
pp. 62-71
Author(s):  
Saleh Redhwan ◽  
Sadikali L. Shaikh

This article deals with a nonlinear implicit fractional differential equation with nonlocal integral-multipoint boundary conditions in the frame of Hilfer fractional derivative. The existence and uniqueness results are obtained by using the fixed point theorems of Krasnoselskii and Banach. Further, to demonstrate the effectiveness of the main results, suitable examples are granted.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 979
Author(s):  
Sandeep Kumar ◽  
Rajesh K. Pandey ◽  
H. M. Srivastava ◽  
G. N. Singh

In this paper, we present a convergent collocation method with which to find the numerical solution of a generalized fractional integro-differential equation (GFIDE). The presented approach is based on the collocation method using Jacobi poly-fractonomials. The GFIDE is defined in terms of the B-operator introduced recently, and it reduces to Caputo fractional derivative and other fractional derivatives in special cases. The convergence and error analysis of the proposed method are also established. Linear and nonlinear cases of the considered GFIDEs are numerically solved and simulation results are presented to validate the theoretical results.


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 130
Author(s):  
Suphawat Asawasamrit ◽  
Yasintorn Thadang ◽  
Sotiris K. Ntouyas ◽  
Jessada Tariboon

In the present article we study existence and uniqueness results for a new class of boundary value problems consisting by non-instantaneous impulses and Caputo fractional derivative of a function with respect to another function, supplemented with Riemann–Stieltjes fractional integral boundary conditions. The existence of a unique solution is obtained via Banach’s contraction mapping principle, while an existence result is established by using Leray–Schauder nonlinear alternative. Examples illustrating the main results are also constructed.


Sign in / Sign up

Export Citation Format

Share Document