scholarly journals Langevin Equations with Generalized Proportional Hadamard–Caputo Fractional Derivative

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
M. A. Barakat ◽  
Ahmed H. Soliman ◽  
Abd-Allah Hyder

We look at fractional Langevin equations (FLEs) with generalized proportional Hadamard–Caputo derivative of different orders. Moreover, nonlocal integrals and nonperiodic boundary conditions are considered in this paper. For the proposed equations, the Hyres–Ulam (HU) stability, existence, and uniqueness (EU) of the solution are defined and investigated. In implementing our results, we rely on two important theories that are Krasnoselskii fixed point theorem and Banach contraction principle. Also, an application example is given to bolster the accuracy of the acquired results.

Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 476
Author(s):  
Jiraporn Reunsumrit ◽  
Thanin Sitthiwirattham

In this paper, we propose sequential fractional delta-nabla sum-difference equations with nonlocal fractional delta-nabla sum boundary conditions. The Banach contraction principle and the Schauder’s fixed point theorem are used to prove the existence and uniqueness results of the problem. The different orders in one fractional delta differences, one fractional nabla differences, two fractional delta sum, and two fractional nabla sum are considered. Finally, we present an illustrative example.


2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Khalid Hilal ◽  
Lahcen Ibnelazyz ◽  
Karim Guida ◽  
Said Melliani

In this paper, we discuss the existence of solutions for nonlinear fractional Langevin equations with nonseparated type integral boundary conditions. The Banach fixed point theorem and Krasnoselskii fixed point theorem are applied to establish the results. Some examples are provided for the illustration of the main work.


2020 ◽  
Vol 107 (121) ◽  
pp. 145-155
Author(s):  
Devaraj Vivek ◽  
E.M. Elsayed ◽  
Kuppusamy Kanagarajan

We study boundary value problems (BVPs for short) for the integro- differential equations via ?-fractional derivative. The results are obtained by using the contraction mapping principle and Schaefer?s fixed point theorem. In addition, we discuss the Ulam-Hyers stability.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Saowaluk Chasreechai ◽  
Chanakarn Kiataramkul ◽  
Thanin Sitthiwirattham

We study existence and uniqueness results for Caputo fractional sum-difference equations with fractional sum boundary value conditions, by using the Banach contraction principle and Schaefer’s fixed point theorem. Our problem contains different numbers of order in fractional difference and fractional sums. Finally, we present some examples to show the importance of these results.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1205
Author(s):  
Usman Riaz ◽  
Akbar Zada ◽  
Zeeshan Ali ◽  
Ioan-Lucian Popa ◽  
Shahram Rezapour ◽  
...  

We study a coupled system of implicit differential equations with fractional-order differential boundary conditions and the Riemann–Liouville derivative. The existence, uniqueness, and at least one solution are established by applying the Banach contraction and Leray–Schauder fixed point theorem. Furthermore, Hyers–Ulam type stabilities are discussed. An example is presented to illustrate our main result. The suggested system is the generalization of fourth-order ordinary differential equations with anti-periodic, classical, and initial boundary conditions.


Author(s):  
Choukri Derbazi ◽  
Zidane Baitiche ◽  
Akbar Zada

Abstract This manuscript is committed to deal with the existence and uniqueness of positive solutions for fractional relaxation equation involving ψ-Caputo fractional derivative. The existence of solution is carried out with the help of Schauder’s fixed point theorem, while the uniqueness of the solution is obtained by applying the Banach contraction principle, along with Bielecki type norm. Moreover, two explicit monotone iterative sequences are constructed for the approximation of the extreme positive solutions to the proposed problem. Lastly, two examples are presented to support the obtained results.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Huili Ma ◽  
Huifang Ma

It is expected in this paper to investigate the existence and uniqueness of positive solution for the following difference equation: -Δ2u(t-1)=f(t,   u(t))+g(t,   u(t)),  t∈Z1,  T, subject to boundary conditions either u(0)-βΔu(0)=0, u(T+1)=αu(η) or Δu(0)=0, u(T+1)=αu(η), where 0<α<1,   β>0,  and   η∈Z2,T-1. The proof of the main result is based upon a fixed point theorem of a sum operator. It is expected in this paper not only to establish existence and uniqueness of positive solution, but also to show a way to construct a series to approximate it by iteration.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Chen Yang ◽  
Jieming Zhang

We are concerned with the existence and uniqueness of positive solutions for the following nonlinear perturbed fractional two-point boundary value problem:D0+αu(t)+f(t,u,u',…,u(n-2))+g(t)=0, 0<t<1, n-1<α≤n, n≥2,u(0)=u'(0)=⋯=u(n-2)(0)=u(n-2)(1)=0, whereD0+αis the standard Riemann-Liouville fractional derivative. Our analysis relies on a fixed-point theorem of generalized concave operators. An example is given to illustrate the main result.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Jun-Rui Yue ◽  
Jian-Ping Sun ◽  
Shuqin Zhang

We consider the following boundary value problem of nonlinear fractional differential equation:(CD0+αu)(t)=f(t,u(t)),  t∈[0,1],  u(0)=0,   u′(0)+u′′(0)=0,  u′(1)+u′′(1)=0, whereα∈(2,3]is a real number, CD0+αdenotes the standard Caputo fractional derivative, andf:[0,1]×[0,+∞)→[0,+∞)is continuous. By using the well-known Guo-Krasnoselskii fixed point theorem, we obtain the existence of at least one positive solution for the above problem.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Azizollah Babakhani ◽  
Dumitru Baleanu

We discuss the existence and uniqueness of solution to nonlinear fractional order ordinary differential equations(Dα-ρtDβ)x(t)=f(t,x(t),Dγx(t)),t∈(0,1)with boundary conditionsx(0)=x0,  x(1)=x1or satisfying the initial conditionsx(0)=0,  x′(0)=1, whereDαdenotes Caputo fractional derivative,ρis constant,1<α<2,and0<β+γ≤α. Schauder's fixed-point theorem was used to establish the existence of the solution. Banach contraction principle was used to show the uniqueness of the solution under certain conditions onf.


Sign in / Sign up

Export Citation Format

Share Document