scholarly journals 5-Azacytidine-Induced Cardiomyocyte Differentiation of Very Small Embryonic-Like Stem Cells

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
XiaoLin Sun ◽  
HongXiao Li ◽  
Ye Zhu ◽  
Pei Xu ◽  
QiSheng Zuo ◽  
...  

The use of stem cells in generating cell-based pacemaker therapies for bradyarrhythmia is currently being considered. Due to the propensity of stem cells to form tumors, as well as ethical issues surrounding their use, the seed cells used in cardiac biological pacemakers have limitations. Very small embryonic-like stem cells (VSELs) are a unique and rare adult stem cell population, which have the same structural, genetic, biochemical, and functional characteristics as embryonic stem cells without the ethical controversy. In this study, we investigated the ability of rat bone marrow- (BM-) derived VSELs to differentiate in vitro into cardiomyocytes by 5-Azacytidine (5-AzaC) treatment. The morphology of VSELs treated with 10 μM 5-AzaC increased in volume and gradually changed to cardiomyocyte-like morphology without massive cell death. Additionally, mRNA expression of the cardiomyocyte markers cardiac troponin-T (cTnT) and α-sarcomeric actin (α-actin) was significantly upregulated after 5-AzaC treatment. Conversely, stem cell markers such as Nanog, Oct-4, and Sox2 were continuously downregulated posttreatment. On day 14 post-5-AzaC treatment, the positive expression rates of cTnT and α-actin were 18.41±1.51% and 19.43±0.51%, respectively. Taken together, our results showed that rat BM-VSELs have the ability to differentiate into cardiomyocytes in vitro. These findings suggest that VSELs would be useful as seed cells in exploring the mechanism of biological pacemaker activity.

2012 ◽  
Vol 25 (1) ◽  
pp. 127-134 ◽  
Author(s):  
D. Ponnaiyan ◽  
K.M. Bhat ◽  
G.S. Bhat

It has been established that human dental pulp and periodontal ligament contain a population of mesenchymal stem cells (MSCs). However, the phenotypic analysis in terms of putative stem cell markers expressed by these stem cell populations is incomplete. It is relevant to understand whether stem cells derived from closely related tissues are programmed differently. The aim of the present study is to analyze whether these stem cells depict distinct characteristics by gaining insight into differences in their immunophenotype. Dental pulp and periodontal ligament tissue samples were obtained from extracted impacted wisdom teeth. Cell cultures were analyzed for surface and intracellular markers by indirect immunoflourescence. Detailed immunophenotype analysis was carried out by flow cytometry using relevant markers. The present study data shows dental pulp stem cells (DPSCs) and periodontal ligament stem cells (PDLSCs) expressed embryonic stem (ES) cell markers Oct-4, Nanog and mesodermal marker Vimentin by indirect immunoflourescence. PDLSCs, however, had a weak expression of Nanog. Immunophenotyping revealed strong expression of MSC markers (CD73, CD90) in DPSCs and PDLSCs. Differences were observed in expression of sternness-related markers. DPSCs displayed increased percentages of SSEA4, CD13 and CD166 and decreased CD9 expression compared to PDLSCs. Both stem cells express common MSC markers, different levels of expression suggests there might be more than one stem cell population existing within these tissues which differ in their embryonic status, and DPSCs are a more primitive stem cell population in comparison to PDLSCs.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Maria G. Roubelakis ◽  
Ourania Trohatou ◽  
Nicholas P. Anagnou

Amniotic fluid (AF) and amniotic membrane (AM) have been recently characterized as promising sources of stem or progenitor cells. Both not only contain subpopulations with stem cell characteristics resembling to adult stem cells, such as mesenchymal stem cells, but also exhibit some embryonic stem cell properties like (i) expression of pluripotency markers, (ii) high expansion in vitro, or (iii) multilineage differentiation capacity. Recent efforts have been focused on the isolation and the detailed characterization of these stem cell types. However, variations in their phenotype, their heterogeneity described by different groups, and the absence of a single marker expressed only in these cells may prevent the isolation of a pure homogeneous stem cell population from these sources and their potential use of these cells in therapeutic applications. In this paper, we aim to summarize the recent progress in marker discovery for stem cells derived from fetal sources such as AF and AM, using novel methodologies based on transcriptomics, proteomics, or secretome analyses.


2009 ◽  
Vol 8 (1) ◽  
pp. 79-87 ◽  
Author(s):  
Chris Pierret ◽  
Patricia Friedrichsen

The intersection of science and our society has led to legal and ethical issues in which we all play a part. To support development of scientific literacy, college science courses need to engage students in difficult dialogues around ethical issues. We describe a new course, Stem Cells and Society, in which students explore the basic biology of stem cell research and the controversy surrounding it. As part of the course, we highlight the nature of science, looking at the methods and norms within the scientific community. To gain a perspective on the current stem cell controversy, we examine the public debates in the 1970s surrounding in vitro fertilization, the stem cell initiative in Missouri, and the personal and religious viewpoints that have emerged relative to the stem cell debate. In the Stem Cells and Society course, students are challenged to develop and clarify their own personal positions concerning embryonic stem cell research. These positions are grounded in science, religion or personal philosophy, and law.


2019 ◽  
Vol 7 (4) ◽  
pp. 183-188 ◽  
Author(s):  
Katarzyna Stefańska ◽  
Rafał Sibiak ◽  
Greg Hutchings ◽  
Claudia Dompe ◽  
Lisa Moncrieff ◽  
...  

AbstractGranulosa cells (GCs) are important component of the follicle, a principal functional unit of the ovary. They undergo highly dynamic changes during folliculogenesis and play a vital role in oocyte’s maturation. Recently, it has been shown that GCs also exhibit stem cell properties, since they express OCT-4, Nanog, Sox-2, which are markers of pluripotency, as well as several mesenchymal stem cell markers, such as CD29, CD44, CD90, CD105, CD117 or CD166. In addition, GCs are able to differentiate towards neurogenic, chondrogenic and osteogenic lineages. Since the use of embryonic stem cells in regenerative medicine is burdened with ethical concerns and the risk of immune rejection or teratoma formation, adult stem cells are emerging as a promising alternative. GCs especially seem to provide a promising source of stem cells, since they are easily obtainable during assisted reproduction techniques. In order to better understand the genetic changes taking place in proliferating granulosa cells cultured in vitro, we isolated GCs from 40 prepubertal gilts and cultured them in vitro for 168 h. After 24, 48, 72, 96, 120, 144 and 168 h of cultivation the total RNA was extracted, reverse transcription was conducted and RT-qPCR reaction was performed. We observed that CD44, CD90 and IGF1 were upregulated after the cultivation, whereas CD105 and LIF were downregulated. Collectively, our results confirm stemness potential of porcine GCs and provide an insight into the transcriptome changes during in vitro cultivation.Running title: Molecular stemness markers in porcine granulosa cells


Author(s):  
Ankur Sharma ◽  
Syed Mohmad Shah ◽  
Neha Saini ◽  
Ramakant Kaushik ◽  
Manoj Kumar Singh ◽  
...  

Isolation of goat spermatogonial stem cells (gSSC) from pre-pubertal testes (3 to 6 months of age) by double enzymatic digestion is reported. The isolated cells were further enriched for spermatogonial stem cell population by filtration through 80- and 60-μm nylon mesh filters, followed by differential plating on DSA-Lectin coated dishes. After overnight incubation, the unattached cells (putative gSSCs) were cultured on sertoli cell feeder layers in SSC medium, composed of DMEM supplemented with 10% FBS, GDNF (Glial cell line derived neurotrophic factor, 40 ng mL-1), bFGF (Basic fibroblast growth factor, 10 ng mL-1) and EGF (Epidermal growth factor, 10 ng mL-1). After 10-15 days, the putative SSCs started to develop and the cultures were maintained till the colonies stopped growing. The colonies were characterized for their affinity to Dolichos biflorus Agglutinin (DBA), alkaline phosphatase (AP) activity and various spermatogonial stem cell markers (PLZF, THY1, UCHL1, BCL6B and ID4). The developed colonies were positive for DBA, AP and all other markers, which is an indication of their being spermatogonial stem cells. In the present study, goat SSCs have been successfully isolated and characterized and the culture conditions will be improved further for developing more efficient and long term in vitro spermatogonial stem cell culture system in goat.


2010 ◽  
Vol 289 (2) ◽  
pp. 208-216 ◽  
Author(s):  
Shaker A. Mousa ◽  
Thangirala Sudha ◽  
Evgeny Dyskin ◽  
Usawadee Dier ◽  
Christine Gallati ◽  
...  

1996 ◽  
Vol 91 (2) ◽  
pp. 141-146 ◽  
Author(s):  
P. H. Jones

1. The keratinocytes in human epidermis are constantly turned over and replaced by a population of stem cells located in the basal epidermal layer. Until recently there were no markers allowing the isolation of viable epidermal stem cells. However, it has now been shown that epidermal stem cells can be isolated both in vitro and direct from the epidermis as they express high levels of functional β1 integrin family receptors for extracellular matrix proteins. 2. The evidence for integrins as stem cell markers and the insights that have been gained into stem cell behaviour are reviewed.


Author(s):  
Silmi Mariya

The mammary gland contains adult stem cells that are capable of self-renewal.  This population plays an important role in the development of mammary gland and breast cancer pathogenesis. The studies of mammary stem cells are limited due to the difficulty to acquire and expand adult stem cell population in an undifferentiated state. In this study, we developed mammosphere cultures of nulliparous cynomolgus monkeys (Macaca fascicularis; Mf) as a culture system to enrich mammary stem cells. This species has similarity of mammary gland structure as humans including anatomy, developmental stages, and lobule profile of mammary gland. The use of stem cells from primate animals is essential to bridge the knowledge gaps resulting from stem cell research using rodents for clinical trials in human. Small samples of mammary tissues were collected by surgical biopsy; cells were cultured as monolayer and cryopreserved. Cryopreserved cells were cultured into mammospheres, and the expression of markers for mammary stem cells was evaluated using qPCR. Cells were further differentiated with 3D approaches to evaluate morphology and organoid budding. The study showed that mammosphere culture resulted in an increase in the expression of mammary stem cell markers with each passage. The 3D differentiation in matrigel allowed for organoid formation. Mammary gland stem cells have been successfully differentiated which characterized by CSN2 marker expression and differentiation regulators marker STAT5 and GATA3. The results indicate that mammospheres can be successfully developed derived from breast tissue of nulliparous Mf collected via surgical biopsy. As the mammosphere allows for enrichment of mammary stem cell population, the findings also suggest that a 3-dimensional system is efficient as in-vitro model to study mammary stem cells and a useful system to study mammary differentiation in regards to cancer prevention.


2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Sangeetha Vadakke Madathil ◽  
Amaresh Ranjan ◽  
Jesse Yoon ◽  
Joseph Tripodi ◽  
Koen Raedschelders ◽  
...  

Stem cell-based therapies for cardiac regeneration are of crucial importance and an ideal cell-type is yet to be established. We previously reported that fetal cells from placenta “home” to injured maternal heart and approximately 40% (40/100) of the migrating cells expressed homeodomain protein Cdx2. This interesting observation led us to hypothesize that placental Cdx2 could be a novel cell target for cardiac differentiation. To understand this phenomenon, we employed a cre-lox strategy that labeled Cdx2 cells in placenta with e-GFP and induced myocardial infarction (MI) in pregnant mice at mid-gestation. The maternal heart was analyzed 4 weeks post-MI for the presence of Cdx2-eGFP-derived cardiomyocytes. Additionally, Cdx2 cells were isolated from late-gestation placenta and assayed for cardiac differentiation in vitro followed by live cell imaging. Phenotypic and whole-cell proteomic analysis, clonal and vascular lineage differentiation and immune profiling were carried out subsequently. We observed that Cdx2 cells migrated to injured maternal hearts and differentiated into cardiomyocytes highlighting the functional significance of fetal-maternal stem cell transfer. Additionally, isolated Cdx2 cells from the late placenta differentiated into spontaneously beating cardiomyocytes and expressed structural proteins cardiac troponin T(cTnT), α-sarcomeric actinin and gap junction protein Cx43. These cells underwent clonal expansion and differentiated into endothelial and smooth muscle lineages in culture indicative of their multipotent nature. Low expression of MHC molecules and other components of the immune-response, infer that these cells possess the ability to evade host immune surveillance. Proteomic analysis demonstrated that 145 proteins were uniquely identified in the Cdx2 cells compared to embryonic stem cells. These protein networks reflected an increased activation of functions involving migration, fertility, homing, and chemotaxis. Our study is the first to demonstrate that Cdx2 may play a role in cardiac differentiation and delineate multipotent cells in placenta with an inherent “homing” ability. These findings point to a potential role for Cdx2 cells in cardiac regenerative therapies using allogeneic cells.


Zygote ◽  
2021 ◽  
pp. 1-6
Author(s):  
Gerelchimeg Bou ◽  
Shimeng Guo ◽  
Jia Guo ◽  
Zhuang Chai ◽  
Jianchao Zhao ◽  
...  

Summary The efficiency of establishing pig pluripotent embryonic stem cell clones from blastocysts is still low. The transcription factor Nanog plays an important role in maintaining the pluripotency of mouse and human embryonic stem cells. Adequate activation of Nanog has been reported to increase the efficiency of establishing mouse embryonic stem cells from 3.5 day embryos. In mouse, Nanog starts to be strongly expressed as early as the morula stage, whereas in porcine NANOG starts to be strongly expressed by the late blastocyst stage. Therefore, here we investigated both the effect of expressing NANOG on porcine embryos early from the morula stage and the efficiency of porcine pluripotent embryonic stem cell clone formation. Compared with intact porcine embryos, NANOG overexpression induced a lower blastocyst rate, and did not show any advantages for embryo development and pluripotent embryonic stem cell line formation. These results indicated that, although NANOG is important pluripotent factor, NANOG overexpression is unnecessary for the initial formation of porcine pluripotent embryonic stem cell clones in vitro.


Sign in / Sign up

Export Citation Format

Share Document