scholarly journals Leveraging Innovation Resources for Modular Products under Open Innovation Scenarios Using Fuzzy Distance Method

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Hai-jun Wang ◽  
Chao-hui Shu

In an open innovation environment, it is meaningful for manufacturing enterprises targeting global markets to integrate qualified innovation resources. In this paper, the linkage between product modularity and open innovation is first discussed, revealing a role that modular product architecture plays in linking enterprises’ innovation requirements and innovation resources as external innovation inputs. Next, indices for evaluating external innovation resources are developed. An evaluation method based on fuzzy distance is then proposed, which is intended to select optimal resources for the core modules of modular product architecture. A modular product of Haier Group is used as a typical case to verify the proposed method. Consistent evaluation results of innovation resources are achieved for different decision-making attitudes. Another finding regarding the case enterprise is that the resource management mechanisms it employs lead to a win-win cooperative relationship with its partners.

Author(s):  
Tian-Li Yu ◽  
Ali A. Yassine ◽  
David E. Goldberg

The architecture of a product is determined by both the elements that compose the product and the way in which they interact with each other. In this paper, we use the design structure matrix (DSM) as a tool to capture this architecture. Designing modular products can result in many benefits to both consumers and manufacturers. The development of modular products requires the identification of highly interactive groups of elements and arranging (i.e. clustering) them into modules. However, no rigorous DSM clustering technique can be found in product development literature. This paper presets a review of the basic DSM building blocks used in the identification of product modules. The DSM representation and building blocks are used to develop a new DSM clustering tool based on a genetic algorithm (GA) and the minimum description length (MDL) principle. The new tool is capable of partitioning the product architecture into an “optimal” set of modules or sub-systems. We demonstrate this new clustering method using an example of a complex product architecture for an industrial gas turbine.


Author(s):  
Kevin R. Allen ◽  
Susan Carlson-Skalak

Abstract Product architecture can have a significant impact on a product’s life-cycle and its development time. Modular product architecture allows for easy disassembly upon product retirement and allows for wide product variety. In a small company, the team structure of the company can correspond to the modules, and modules can be used across product lines. By using similar modules from one generation to the next, product development time can be reduced. The methodology described in this paper gives a small company the framework from which to develop modular products.


2017 ◽  
Vol 28 (3) ◽  
pp. 353-370 ◽  
Author(s):  
Sebastian Pashaei ◽  
Jan Olhager

Purpose The purpose of this paper is to explore how integral and modular product architectures influence the design properties of the global operations network. Design/methodology/approach The authors perform a multiple-case study of three global manufacturing companies, using interviews, seminars and structured questionnaires to identify ideal design properties. Findings The authors find that the choice of integral vs modular product architecture lead to significant differences in the preferred design properties of global operations networks concerning number of key technologies in-house, number of capable plants, focus at assembly plants, distance between assembly plant and market, and number of key supplier sites. Two of these were identified through this research, i.e. the number of capable plants and number of key supplier sites. The authors make a distinction between component and assembly plants, which adds detail to the understanding of the impact of product architecture on global operations. In addition, they develop five propositions that can be tested in further survey research. Research limitations/implications This study is restricted to three large manufacturing companies with global operations. However, the authors investigated both integral and modular products at these three companies and their associated global operations network. Still, further case or survey research involving a broader set of companies is warranted. Practical implications The key aspects for integral products are to have many key technologies in-house, concentration of production at a few capable plants, and economies-of-scale at assembly plants, while long distances between assembly plants and markets as well as few key supplier sites are acceptable. For modular products, the key aspects are many capable plants, economies-of-scope at assembly plants, short distance between assembly plants and markets, and many key supplier sites, while key technologies do not necessarily have to reside in-house – these can be accessed via key suppliers. Originality/value This paper is, to the authors’ knowledge, the first study on the explicit impact of product architecture on global operations networks, especially considering the internal manufacturing network.


2022 ◽  
pp. 226-251
Author(s):  
Metehan Feridun Sorkun ◽  
Özgür Özpeynirci

This chapter seeks to identify the set of conditions under which the mirroring hypothesis holds, proposing that modular product architecture leads to organizational modularity (i.e., supplier disintegration). The contradictory results on the mirroring hypothesis in the extant literature call for a more holistic analysis of the issue. To this end, this chapter develops a multi-objective mathematical model, allowing for the simultaneous examination of potentially influential factors, including those claimed to be neglected by the mirroring hypothesis. The findings reveal that modular product architecture does not necessarily lead to supplier disintegration, but that its effect is contingent on a firm's priorities.


2021 ◽  
Vol 1 ◽  
pp. 2057-2066
Author(s):  
Nicola Viktoria Ganter ◽  
Behrend Bode ◽  
Paul Christoph Gembarski ◽  
Roland Lachmayer

AbstractOne of the arguments against an increased use of repair is that, due to the constantly growing progress, an often already outdated component would be restored. However, refurbishment also allows a component to be modified in order to upgrade it to the state of the art or to adapt it to changed requirements. Many existing approaches regarding Design for Upgradeability are based on a modular product architecture. In these approaches, however, only the upgradeability of a product is considered through the exchange of components. Nevertheless, the exchange and improvement of individual component regions within a refurbishment has already been successfully carried out using additive processes. In this paper, a general method is presented to support the reengineering process, which is necessary to refurbish and upgrade a damaged component. In order to identify which areas can be replaced in the closed system of a component, the systematics of the modular product architecture are used. This allows dependencies between functions and component regions to be identified. Thus, it possible to determine which functions can be integrated into the intended component.


2014 ◽  
Vol 32 (1) ◽  
pp. 98-110 ◽  
Author(s):  
Tucker J. Marion ◽  
Marc H. Meyer ◽  
Gloria Barczak

2002 ◽  
Vol 10 (2) ◽  
pp. 153-164 ◽  
Author(s):  
J. C. Sand ◽  
P. Gu ◽  
G. Watson

Product modularization aims to improve the overall design, manufacturing, operational, and post-retirement characteristics of products by designing or redesigning the product architectures. A successful modular product can assist the reconfiguration of products, while reducing the lead-time of design and manufacturing and improving the ability for upgrading, maintenance, customization and recycling. This paper presents a new modular design method called the House Of Modular Enhancement (HOME) for product redesign. Information from various aspects of the product design, including functional requirements, product architecture and life cycle requirements, is incorporated in the method to help ensure that a modularized product would achieve the objectives. The HOME method has been implemented in a software system. A case study will be presented to illustrate the HOME method and the software.


2014 ◽  
Vol 907 ◽  
pp. 197-210 ◽  
Author(s):  
Günther Schuh ◽  
Stefan Rudolf ◽  
Jens Arnoscht ◽  
Bastian Lüdtke

Companies producing in high-wage countries are increasingly challenged due to the necessary differentiation and cost pressure. The modular product platform approach is more and more used by these companies for structuring their product range in order to realise and deploy commonalities. This type of product architecture enables companies to produce nearly individual products without losing economies of scale across the product range. Economies of scale due to communalities result in decreased process costs, reduced development lead-time by uncoupling the development of modules and products as well as the augmentation of the technical product robustness. However, the design of modular product platforms itself causes new challenges regarding the product structuring, the process and organizational design. Recent approaches for the development of communalities through modular product platforms are focusing only the product itself. Since costs are mainly determined in the development phase but caused later in the production phase both product and production have to be taken into account. Furthermore, modular product platforms have a higher variety and diversity of elements since they represent the components, modules and functions of the entire product program. This paradigm shift from an integral product design to a modular product structure cannot be controlled with existing models and methods. Our paper confirms commonality has to be optimized by focusing both the product and production. Therefore we have designed a descriptive framework (commonality model) to display and optimize the commonality both in the product and the process. Furthermore, a product architecture development process that is superior to the individual product development processes was developed for the systematic design of commonalities. The approach presented in this paper focusses on the interactions between product and process parameters. In our approach these interactions will first be displayed based on the graph theory and then be optimized applying sensitivity analysis. By varying relevant parameters both on the product and process side constitutive features can be derived determining product and process standards in order to enhance the overall commonality level.


Sign in / Sign up

Export Citation Format

Share Document