HOME: House Of Modular Enhancement—a Tool for Modular Product Redesign

2002 ◽  
Vol 10 (2) ◽  
pp. 153-164 ◽  
Author(s):  
J. C. Sand ◽  
P. Gu ◽  
G. Watson

Product modularization aims to improve the overall design, manufacturing, operational, and post-retirement characteristics of products by designing or redesigning the product architectures. A successful modular product can assist the reconfiguration of products, while reducing the lead-time of design and manufacturing and improving the ability for upgrading, maintenance, customization and recycling. This paper presents a new modular design method called the House Of Modular Enhancement (HOME) for product redesign. Information from various aspects of the product design, including functional requirements, product architecture and life cycle requirements, is incorporated in the method to help ensure that a modularized product would achieve the objectives. The HOME method has been implemented in a software system. A case study will be presented to illustrate the HOME method and the software.

Author(s):  
J. Sand ◽  
P. Gu ◽  
G. Watson

Abstract Product modularization aims to improve the overall design, manufacturing, operational, and post-retirement characteristics of products by designing or redesigning the product architectures. A successful modular product can assist the reconfiguration of products, while reducing the lead time of design and manufacturing and improving the ability for upgrading, maintenance, customization and recycling. This paper presents a new modular design method called the House Of Modular Enhancement (HOME) for product redesign. Information from various aspects of the product design, including functional requirements, product architecture and life cycle requirements, is incorporated in the method to help ensure that a modularized product would achieve the objectives. The HOME method has been implemented in a software system. A case study will be presented to illustrate the HOME method and the software.


2021 ◽  
Vol 13 (7) ◽  
pp. 168781402110343
Author(s):  
Mei Yang ◽  
Yimin Xia ◽  
Lianhui Jia ◽  
Dujuan Wang ◽  
Zhiyong Ji

Modular design, Axiomatic design (AD) and Theory of inventive problem solving (TRIZ) have been increasingly popularized in concept design of modern mechanical product. Each method has their own advantages and drawbacks. The benefit of modular design is reducing the product design period, and AD has the capability of problem analysis, while TRIZ’s expertise is innovative idea generation. According to the complementarity of these three approaches, an innovative and systematic methodology is proposed to design big complex mechanical system. Firstly, the module partition is executed based on scenario decomposition. Then, the behavior attributes of modules are listed to find the design contradiction, including motion form, spatial constraints, and performance requirements. TRIZ tools are employed to deal with the contradictions between behavior attributes. The decomposition and mapping of functional requirements and design parameters are carried out to construct the structural hierarchy of each module. Then, modules are integrated considering the connections between each other. Finally, the operation steps in application scenario are designed in temporal and spatial dimensions. Design of cutter changing robot for shield tunneling machine is taken as an example to validate the feasibility and effectiveness of the proposed method.


Author(s):  
Xiaoxia Lai ◽  
John K. Gershenson

Researchers have expanded the definition of product modularity from function-based modularity to life-cycle process-based modularity. In parallel, measures of product modularity have been developed as well as corresponding modular product design methods. However, a correct modularity measure and modular design method are not enough to realize modular product design. To apply the measure and design method correctly, product representation becomes an important aspect of modular design and imperative for realizing the promised cost savings of modularity. In this paper, a representation for retirement process-based modular design has been developed. Built upon previous representations for assembly and manufacturing-based product design, the representation includes a process similarity matrix and a process dependency matrix. The retirement process-based similarity is based on the similarity in components’ post-life intents (recycling, reuse, disposal), and either the degree of their material compatibility if the components will be recycled, or their disassembly direction or disassembly tools if they need to be disassembled from each other for retirement. Process similarity within a module leads to increased process efficiency (the elimination of non-value added tasks) from the sharing of tooling/equipment. Retirement process-based dependency is developed based on disassembly difficulty, one aspect of the physical interactions between components. Retiring components together as a module to eliminate disassembly and differential processing and reducing the disassembly difficulty between the modules can increase the efficiency of the retirement process. We have first presented which process elements we should consider for defining retirement process similarity and dependency, and then constructed the respective similarity and dependency factors tables. These tables include similarity and dependency factors, which, along with their quantifications, are used to determine a product’s modular architecture to facilitate the retirement process. Finally, a fishing reel is used to illustrate how to apply these factors tables to generate the similarity and dependency matrices that represent a product for retirement-process based modular design. Using these representations as input to the DSM-based modular design methods, we can achieve a design with a modular architecture that improves the retirement process efficiency and reduces retirement costs.


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4880 ◽  
Author(s):  
Jiang ◽  
Li

Fault diagnosability is the basis of fault diagnosis. Fault diagnosability evaluation refers to whether there is enough measurable information in the system to support the rapid and reliable detection of a fault. However, due to unavoidable measurement errors in a system, a quantitative evaluation index of system fault diagnosability is inadequate. In order to overcome the adverse effects of measurement errors, improve the accuracy of the quantitative evaluation of fault diagnosability, and improve the safety level of the system, a method for a permissible area analysis of measurement errors for a quantitative evaluation of fault diagnosability is proposed in this paper. Firstly, in order for the residuals obey normal distribution, a design method of the permissible area of measurement errors based on the Kullback–Leibler divergence (KLD) is given. Secondly, two key problems in calculating the KLD are solved by sparse kernel density estimation and the Monte Carlo method. Finally, the feasibility and validity of the method are analyzed through a case study.


Author(s):  
Masato Toi ◽  
Yutaka Nomaguchi ◽  
Kikuo Fujita

Abstract This paper proposed a design support method based on structuralization and analysis of various design candidates of product architecture design. The product architecture is a basic scheme that assigns the function of the product to physical components. In the conventional modular design method, a concise model, i.e., a graph or a matrix, is used to express the interactions of the system’s components and aims to support the designer grasping the system behavior. The Design Structure Matrix (DSM) is a representative model of system architecture and enables quantitative evaluation of design candidates. While various design candidates are generated through mathematical operations, it is difficult to understand their relationships from simple comparisons because of discrete behavior and the size of the problem. It must be a critical issue at the stage of selecting and interpreting the design candidates. In the proposed method, the design candidates are classified and structuralized as a dendrogram by the hierarchical clustering method. The comparison of clusters of each branch of dendrogram clarifies the system leverage points. The information of the system is summarized into the hierarchical tree-shaped graph that corresponds to the dendrogram. The designer can explore the design candidates with such a graph-based based interpretation of underlying structures effectively.


2015 ◽  
Vol 773-774 ◽  
pp. 866-870
Author(s):  
Lee Guang Beng ◽  
Omar Badrul

Application of axiomatic design (AD) for the purpose of enhancing end-of-life recovery potential of a product has been the main focus of this paper. To demonstrate the usage of AD in this particular area, a case study that involves keypad assemblies of mobile phones is presented. The functional requirements (FR) of the two assemblies were defined differently (only Handset 2 involves refurbishment-related FRs). Using evaluation approach presented by Kwak and Kim (2010), it can be observed that when recovery-related requirements are omitted, application of AD produces a keypad assembly that fulfills the FRs derived from customer needs with more complicated product architecture. In contrast, when recovery-related FRs are included during problem definition using axiomatic approach, the disassemblability of the resulted keypad is improved and thus increasing recovery potential in the event of replacing defective keypad, while satisfying product-related FRs.


Author(s):  
Junfeng Ma ◽  
Gül E. Okudan Kremer

Sustainability has been the emphasis of intense discussion over recent decades, but mostly focused on addressing critical aspects of environmental issues. An increasing awareness of social responsibilities and ever-shifting customer requirements have led manufacturers to consider social sustainability during the design phase in tandem with addressing environmental concerns; thus, design for social sustainability has evolved as a new product design direction. Modular product design (MPD), has been widely used in both academia and industry because of its significant benefits in design engineering. Because of the potential synergy, investigating design for social sustainability in association with MPD holds promise as a field of investigation. In this paper, we introduce a novel MPD approach that uses the elements of key component specification and product impact on social sustainability. The key components carry core technologies or have the highest sustainability effects in a product (i.e., the most costly or environmentally polluting parts). Product competitiveness strongly relies on a few key components that should be a focal point during product development. However, to the best of our knowledge, key components have not been well addressed in modular product design. In this paper, we employ labor time as an indicator to measure social sustainability. A heuristic-based clustering algorithm with labor time optimization is developed to categorize components into modules. A coffee-maker case study is conducted to demonstrate the applicability of the proposed methodology.


2009 ◽  
Vol 2009.19 (0) ◽  
pp. 259-261
Author(s):  
Akihiro Hirao ◽  
Tsuyoshi Koga ◽  
Takashi Niwa ◽  
Kazuya Oizumi ◽  
Kazuhiro Aoyama

2009 ◽  
Vol 131 (6) ◽  
Author(s):  
Eric Bonjour ◽  
Samuel Deniaud ◽  
Maryvonne Dulmet ◽  
Ghassen Harmel

Modular product design has received great attention for about 10 years, but few works have proposed tools to either jointly design the functional and physical architectures or propagate the impact of evolutions from one domain to another. In this paper, we present a new method supporting the product architecture design. In new product development situations or in re-engineering projects, system architects could use this method in the early design stages to predetermine cohesive modules and integrative elements and to simulate a domain architecture by propagating architecture choices from another domain. To illustrate our approach, we present an industrial case study concerning the design of a new automobile powertrain.


2021 ◽  
Author(s):  
Allan D. Finistauri

In this dissertation a new modular design method for morphing wings is presented. First, a design method was created, applying modularity and recon gurability to a morphing wing system. With modularity being a requirement for the morphing wing system, a discretization method is developed to determine the discrete number of modules required to perform a desired morphing maneuver. Then, a specialized, modular, recon gurable variable geometry truss mechanism is proposed to facilitate morphing. The specialized modular wing truss is a recon gurable, limited mobility parallel mechanism, adapted to t within the volume of a wing. The mobility of the wing truss module is analyzed via a branch-based mobility and connectivity analysis that imposes kinematic requirements on the truss mechanism. The mobility and connectivity requirements are used to perform an enumeration analysis to isolate candidate module con gurations for morphing. Then, a parametric kinematic constraint system is developed and applied to the wing module and the kinematic performance of the module is evaluated. The kinematics are applied to a mechanical prototype of the wing module for validation purposes. Finally, the kinematics are used to evaluate the motion response of a wing skin system to lay the foundation for detailed design.


Sign in / Sign up

Export Citation Format

Share Document