The Influence of Digital Design and IT on Modular Product Architecture

2014 ◽  
Vol 32 (1) ◽  
pp. 98-110 ◽  
Author(s):  
Tucker J. Marion ◽  
Marc H. Meyer ◽  
Gloria Barczak
2021 ◽  
Vol 1 ◽  
pp. 2057-2066
Author(s):  
Nicola Viktoria Ganter ◽  
Behrend Bode ◽  
Paul Christoph Gembarski ◽  
Roland Lachmayer

AbstractOne of the arguments against an increased use of repair is that, due to the constantly growing progress, an often already outdated component would be restored. However, refurbishment also allows a component to be modified in order to upgrade it to the state of the art or to adapt it to changed requirements. Many existing approaches regarding Design for Upgradeability are based on a modular product architecture. In these approaches, however, only the upgradeability of a product is considered through the exchange of components. Nevertheless, the exchange and improvement of individual component regions within a refurbishment has already been successfully carried out using additive processes. In this paper, a general method is presented to support the reengineering process, which is necessary to refurbish and upgrade a damaged component. In order to identify which areas can be replaced in the closed system of a component, the systematics of the modular product architecture are used. This allows dependencies between functions and component regions to be identified. Thus, it possible to determine which functions can be integrated into the intended component.


2002 ◽  
Vol 10 (2) ◽  
pp. 153-164 ◽  
Author(s):  
J. C. Sand ◽  
P. Gu ◽  
G. Watson

Product modularization aims to improve the overall design, manufacturing, operational, and post-retirement characteristics of products by designing or redesigning the product architectures. A successful modular product can assist the reconfiguration of products, while reducing the lead-time of design and manufacturing and improving the ability for upgrading, maintenance, customization and recycling. This paper presents a new modular design method called the House Of Modular Enhancement (HOME) for product redesign. Information from various aspects of the product design, including functional requirements, product architecture and life cycle requirements, is incorporated in the method to help ensure that a modularized product would achieve the objectives. The HOME method has been implemented in a software system. A case study will be presented to illustrate the HOME method and the software.


2014 ◽  
Vol 907 ◽  
pp. 197-210 ◽  
Author(s):  
Günther Schuh ◽  
Stefan Rudolf ◽  
Jens Arnoscht ◽  
Bastian Lüdtke

Companies producing in high-wage countries are increasingly challenged due to the necessary differentiation and cost pressure. The modular product platform approach is more and more used by these companies for structuring their product range in order to realise and deploy commonalities. This type of product architecture enables companies to produce nearly individual products without losing economies of scale across the product range. Economies of scale due to communalities result in decreased process costs, reduced development lead-time by uncoupling the development of modules and products as well as the augmentation of the technical product robustness. However, the design of modular product platforms itself causes new challenges regarding the product structuring, the process and organizational design. Recent approaches for the development of communalities through modular product platforms are focusing only the product itself. Since costs are mainly determined in the development phase but caused later in the production phase both product and production have to be taken into account. Furthermore, modular product platforms have a higher variety and diversity of elements since they represent the components, modules and functions of the entire product program. This paradigm shift from an integral product design to a modular product structure cannot be controlled with existing models and methods. Our paper confirms commonality has to be optimized by focusing both the product and production. Therefore we have designed a descriptive framework (commonality model) to display and optimize the commonality both in the product and the process. Furthermore, a product architecture development process that is superior to the individual product development processes was developed for the systematic design of commonalities. The approach presented in this paper focusses on the interactions between product and process parameters. In our approach these interactions will first be displayed based on the graph theory and then be optimized applying sensitivity analysis. By varying relevant parameters both on the product and process side constitutive features can be derived determining product and process standards in order to enhance the overall commonality level.


Author(s):  
Tian-Li Yu ◽  
Ali A. Yassine ◽  
David E. Goldberg

The architecture of a product is determined by both the elements that compose the product and the way in which they interact with each other. In this paper, we use the design structure matrix (DSM) as a tool to capture this architecture. Designing modular products can result in many benefits to both consumers and manufacturers. The development of modular products requires the identification of highly interactive groups of elements and arranging (i.e. clustering) them into modules. However, no rigorous DSM clustering technique can be found in product development literature. This paper presets a review of the basic DSM building blocks used in the identification of product modules. The DSM representation and building blocks are used to develop a new DSM clustering tool based on a genetic algorithm (GA) and the minimum description length (MDL) principle. The new tool is capable of partitioning the product architecture into an “optimal” set of modules or sub-systems. We demonstrate this new clustering method using an example of a complex product architecture for an industrial gas turbine.


Author(s):  
Kevin R. Allen ◽  
Susan Carlson-Skalak

Abstract Product architecture can have a significant impact on a product’s life-cycle and its development time. Modular product architecture allows for easy disassembly upon product retirement and allows for wide product variety. In a small company, the team structure of the company can correspond to the modules, and modules can be used across product lines. By using similar modules from one generation to the next, product development time can be reduced. The methodology described in this paper gives a small company the framework from which to develop modular products.


2012 ◽  
Vol 16 (02) ◽  
pp. 1250010 ◽  
Author(s):  
MAXIMILIAN HANS PASCHE ◽  
MAGNUS PERSSON

Facing constantly increasing product variety and changing customer demands, many companies have adopted a product modularisation strategy to increase strategic flexibility. Despite the dominant view that product modularisation directly increases strategic flexibility, it is argued here that the causal link between product modularisation and strategic flexibility is mediated by specific complementary organisational factors which enable firms with a modular product structure to develop strategic flexibility. Moreover, the interrelationship between product architecture and organisational structure is regarded as reciprocal. That is, product architecture and organisational structure are considered to co-evolve and mutually influence each other. The purpose of this paper is to elucidate how firms applying a modularisation strategy organise in order to increase the strategic flexibility, and how the organisational structure is interrelated with the product architecture, especially the ability to maintain a modular product architecture over time. Two International automotive companies, both of them implemented a modularisation strategy in the mid-1990s, have been studied. From the cases it can be concluded that the alignment of product and organisational architecture, decision-making structures, and the management of knowledge affect a firm's ability to evolve its products and maintain a modular product structure over time.


2009 ◽  
Vol 131 (6) ◽  
Author(s):  
Eric Bonjour ◽  
Samuel Deniaud ◽  
Maryvonne Dulmet ◽  
Ghassen Harmel

Modular product design has received great attention for about 10 years, but few works have proposed tools to either jointly design the functional and physical architectures or propagate the impact of evolutions from one domain to another. In this paper, we present a new method supporting the product architecture design. In new product development situations or in re-engineering projects, system architects could use this method in the early design stages to predetermine cohesive modules and integrative elements and to simulate a domain architecture by propagating architecture choices from another domain. To illustrate our approach, we present an industrial case study concerning the design of a new automobile powertrain.


2020 ◽  
Vol 1 ◽  
pp. 2405-2414
Author(s):  
F. M. Seiler ◽  
D. Krause

AbstractWith an increasing demand for product individualisation leading to increased product architecture complexity and -costs, modular kits are one common measure to cope with this issue. The management of such a modular kit as well as the methodical determination of a specific product variant is key to the manufacturer's success. As multiple influence factors need to be taken into account when configuring product variants, we propose a multi-dimensional geometric optimisation algorithm, allowing for prioritising varying customer demands and thereby determining the ideally balanced product variant.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Hai-jun Wang ◽  
Chao-hui Shu

In an open innovation environment, it is meaningful for manufacturing enterprises targeting global markets to integrate qualified innovation resources. In this paper, the linkage between product modularity and open innovation is first discussed, revealing a role that modular product architecture plays in linking enterprises’ innovation requirements and innovation resources as external innovation inputs. Next, indices for evaluating external innovation resources are developed. An evaluation method based on fuzzy distance is then proposed, which is intended to select optimal resources for the core modules of modular product architecture. A modular product of Haier Group is used as a typical case to verify the proposed method. Consistent evaluation results of innovation resources are achieved for different decision-making attitudes. Another finding regarding the case enterprise is that the resource management mechanisms it employs lead to a win-win cooperative relationship with its partners.


Sign in / Sign up

Export Citation Format

Share Document