scholarly journals Multidimensional Meteorological Variables for Wind Speed Forecasting in Qinghai Region of China: A Novel Approach

2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
He Jiang ◽  
Luo Shihua ◽  
Yao Dong

The accurate, efficient, and reliable forecasting of wind speed is a hot research topic in wind power generation and integration. However, available forecasting models focus on forecasting the wind speed using historical wind speed data and ignore multidimensional meteorological variables. The objective is to develop a hybrid model with multidimensional meteorological variables for forecasting the wind speed accurately. The complementary ensemble empirical mode decomposition with adaptive noise (CEEMDAN) is applied to handle the nonlinearity of the wind speed. Then, the original wind speed will be decomposed into a series of intrinsic model functions with specified numbers of frequencies. A quadratic model that considers the two-way interactions between factors is used to pursue accurate forecasting. To reduce the model complexity, Gram–Schmidt-based feature selection (GSFS) is applied to extract the important meteorological factors. Finally, all the forecasting values of IMFs will be summed by assigning weights that are carefully determined by the whale optimization algorithm (WOA). The proposed forecasting approach has been applied on six datasets that were collected in Qinghai province and is compared with several state-of-the-art wind speed forecasting models. The forecasting results demonstrate that the proposed model can represent the nonlinearity of the wind speed and deliver better results than the competitors.

2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Zongxi Qu ◽  
Kequan Zhang ◽  
Jianzhou Wang ◽  
Wenyu Zhang ◽  
Wennan Leng

As a type of clean and renewable energy, the superiority of wind power has increasingly captured the world’s attention. Reliable and precise wind speed prediction is vital for wind power generation systems. Thus, a more effective and precise prediction model is essentially needed in the field of wind speed forecasting. Most previous forecasting models could adapt to various wind speed series data; however, these models ignored the importance of the data preprocessing and model parameter optimization. In view of its importance, a novel hybrid ensemble learning paradigm is proposed. In this model, the original wind speed data is firstly divided into a finite set of signal components by ensemble empirical mode decomposition, and then each signal is predicted by several artificial intelligence models with optimized parameters by using the fruit fly optimization algorithm and the final prediction values were obtained by reconstructing the refined series. To estimate the forecasting ability of the proposed model, 15 min wind speed data for wind farms in the coastal areas of China was performed to forecast as a case study. The empirical results show that the proposed hybrid model is superior to some existing traditional forecasting models regarding forecast performance.


2018 ◽  
Vol 8 (10) ◽  
pp. 1754 ◽  
Author(s):  
Tongxiang Liu ◽  
Shenzhong Liu ◽  
Jiani Heng ◽  
Yuyang Gao

Wind speed forecasting plays a crucial role in improving the efficiency of wind farms, and increases the competitive advantage of wind power in the global electricity market. Many forecasting models have been proposed, aiming to enhance the forecast performance. However, some traditional models used in our experiment have the drawback of ignoring the importance of data preprocessing and the necessity of parameter optimization, which often results in poor forecasting performance. Therefore, in order to achieve a more satisfying performance in forecasting wind speed data, a new short-term wind speed forecasting method which consists of Ensemble Empirical Mode Decomposition (EEMD) for data preprocessing, and the Support Vector Machine (SVM)—whose key parameters are optimized by the Cuckoo Search Algorithm (CSO)—is developed in this paper. This method avoids the shortcomings of some traditional models and effectively enhances the forecasting ability. To test the prediction ability of the proposed model, 10 min wind speed data from wind farms in Shandong Province, China, are used for conducting experiments. The experimental results indicate that the proposed model cannot only improve the forecasting accuracy, but can also be an effective tool in assisting the management of wind power plants.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 334 ◽  
Author(s):  
Sizhou Sun ◽  
Lisheng Wei ◽  
Jie Xu ◽  
Zhenni Jin

Accurate wind speed prediction plays a crucial role on the routine operational management of wind farms. However, the irregular characteristics of wind speed time series makes it hard to predict accurately. This study develops a novel forecasting strategy for multi-step wind speed forecasting (WSF) and illustrates its effectiveness. During the WSF process, a two-stage signal decomposition method combining ensemble empirical mode decomposition (EEMD) and variational mode decomposition (VMD) is exploited to decompose the empirical wind speed data. The EEMD algorithm is firstly employed to disassemble wind speed data into several intrinsic mode function (IMFs) and one residual (Res). The highest frequency component, IMF1, obtained by EEMD is further disassembled into different modes by the VMD algorithm. Then, feature selection is applied to eliminate the illusive components in the input-matrix predetermined by partial autocorrelation function (PACF) and the parameters in the proposed wavelet neural network (WNN) model are optimized for improving the forecasting performance, which are realized by hybrid backtracking search optimization algorithm (HBSA) integrating binary-valued BSA (BBSA) with real-valued BSA (RBSA), simultaneously. Combinations of Morlet function and Mexican hat function by weighted coefficient are constructed as activation functions for WNN, namely DAWNN, to enhance its regression performance. In the end, the final WSF values are obtained by assembling the prediction results of each decomposed components. Two sets of actual wind speed data are applied to evaluate and analyze the proposed forecasting strategy. Forecasting results, comparisons, and analysis illustrate that the proposed EEMD/VMD-HSBA-DAWNN is an effective model when employed in multi-step WSF.


2021 ◽  
pp. 0309524X2110520
Author(s):  
Germaine Djuidje Kenmoé ◽  
Hervice Roméo Fogno Fotso ◽  
Claude Vidal Aloyem Kazé

This paper investigates six of the most widely used wind speed forecasting models for a combination of statistical and physical methods for the purpose of Wind Turbine Power Generation (WTPG) prediction in Cameroon. Statistical method based on both single static and dynamic neural networks architectures and two hybrid neural networks architectures in comparison to ARIMA model are employed for multi-step ahead wind speed forecasting in two Datasets in Bapouh, Cameroon. The physical method is used to estimate 1 day ahead expected WTPG for each Dataset using the previous predicted wind speed from better forecasting models. The obtained results of multi-step ahead forecasting showed that the ARIMA and nonlinear autoregression with exogenous input neural network (NARXNN) models perform well the wind speed forecasting than other forecasting models in both Datasets. The better performances of ARIMA are achieved with one-step ahead and two-step ahead forecasting, while NARXNN is better with one-step ahead forecasting. But NARXNN models have more computational time than other models such as ARIMA models. Furthermore, the effectiveness of employed hybrid method for WTPG prediction is proven.


2014 ◽  
Vol 2014 ◽  
pp. 1-21
Author(s):  
Xuejun Chen ◽  
Jing Zhao ◽  
Wenchao Hu ◽  
Yufeng Yang

As one of the most promising renewable resources in electricity generation, wind energy is acknowledged for its significant environmental contributions and economic competitiveness. Because wind fluctuates with strong variation, it is quite difficult to describe the characteristics of wind or to estimate the power output that will be injected into the grid. In particular, short-term wind speed forecasting, an essential support for the regulatory actions and short-term load dispatching planning during the operation of wind farms, is currently regarded as one of the most difficult problems to be solved. This paper contributes to short-term wind speed forecasting by developing two three-stage hybrid approaches; both are combinations of the five-three-Hanning (53H) weighted average smoothing method, ensemble empirical mode decomposition (EEMD) algorithm, and nonlinear autoregressive (NAR) neural networks. The chosen datasets are ten-minute wind speed observations, including twelve samples, and our simulation indicates that the proposed methods perform much better than the traditional ones when addressing short-term wind speed forecasting problems.


Sign in / Sign up

Export Citation Format

Share Document