scholarly journals Compelling Evidence of Oscillatory Behaviour of Hadronic Multiplicities in the Shifted Gompertz Distribution

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
R. Aggarwal ◽  
M. Kaur

Study of charged particle multiplicity distribution in high-energy interactions of particles helps in revealing the dynamics of particle production and the underlying statistical patterns, by which these distributions follow. Several distributions derived from statistics have been employed to understand its behaviour. In one of our earlier papers, we introduced the shifted Gompertz distribution to investigate this variable and showed that the multiplicity distributions in a variety of processes at different energies can be very well described by this distribution. The fact that the shifted Gompertz distribution, which has been extensively used in diffusion theory, social networking and forecasting, has been used for the first time in high-energy physics collisions remains interesting. In this paper, we investigate the phenomenon of oscillatory behaviour of the counting statistics observed in the high-energy experimental data, resulting from different types of recurrence relations defining the probability distributions. We search for such oscillations in the multiplicity distributions well described by the shifted Gompertz distribution and look for retrieval of additional valuable information from these distributions.

1994 ◽  
Vol 09 (36) ◽  
pp. 3359-3366 ◽  
Author(s):  
S. CHATURVEDI ◽  
V. GUPTA ◽  
S.K. SONI

Various probability distributions which have been proposed to explain the charged particle multiplicity distributions in high energy collisions are shown to arise from the evolution equation of a pure birth process subject to appropriate initial conditions. For example, both the negative binomial distribution (NBD) as well as the partially coherent laser distribution (PCLD) can be obtained in this way. New interrelations between some of these probability distributions are also brought out.


2020 ◽  
Vol 35 (36) ◽  
pp. 2050302
Author(s):  
Amr Radi

With many applications in high-energy physics, Deep Learning or Deep Neural Network (DNN) has become noticeable and practical in recent years. In this article, a new technique is presented for modeling the charged particles multiplicity distribution [Formula: see text] of Proton-Proton [Formula: see text] collisions using an efficient DNN model. The charged particles multiplicity n, the total center of mass energy [Formula: see text], and the pseudorapidity [Formula: see text] used as input in DNN model and the desired output is [Formula: see text]. DNN was trained to build a function, which studies the relationship between [Formula: see text]. The DNN model showed a high degree of consistency in matching the data distributions. The DNN model is used to predict with [Formula: see text] not included in the training set. The expected [Formula: see text] had effectively merged the experimental data and the values expected indicate a strong agreement with Large Hadron Collider (LHC) for ATLAS measurement at [Formula: see text], 7 and 8 TeV.


Physics ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 757-780
Author(s):  
Ritu Aggarwal ◽  
Manjit Kaur

Charged particle multiplicity distributions in positron–proton deep inelastic scattering at a centre-of-mass energy s = 300 GeV, measured in the hadronic centre-of-mass frames and in different pseudorapidity windows are studied in the framework of two statistical distributions, the shifted Gompertz distribution and the Weibull distribution. Normalised moments, normalised factorial moments and the H-moments of the multiplicity distributions are determined. The phenomenon of oscillatory behaviour of the counting statistics and the Koba-Nielsen-Olesen (KNO) scaling behaviour are investigated. This is the first such analysis using these data. In addition, projections of the two distributions for the expected average charged multiplicities obtainable at the proposed future ep colliders.


2003 ◽  
Vol 14 (09) ◽  
pp. 1273-1278 ◽  
Author(s):  
MICHAEL KLASEN

The Feynman diagram generator FeynArts and the computer algebra program FormCalc allow for an automatic computation of 2→2 and 2→3 scattering processes in High Energy Physics. We have extended this package by four new kinematical routines and adapted one existing routine in order to accomodate also two- and three-body decays of massive particles. This makes it possible to compute automatically two- and three-body particle decay widths and decay energy distributions as well as resonant particle production within the Standard Model and the Minimal Supersymmetric Standard Model at the tree- and loop-level. The use of the program is illustrated with three standard examples: [Formula: see text], [Formula: see text], and [Formula: see text].


2020 ◽  
Vol 29 (09) ◽  
pp. 2050074
Author(s):  
E. Shokr ◽  
A. H. El-Farrash ◽  
A. De Roeck ◽  
M. A. Mahmoud

Proton–Proton ([Formula: see text]) collisions at the Large Hadron Collider (LHC) are simulated in order to study events with a high local density of charged particles produced in narrow pseudorapidty windows of [Formula: see text] = 0.1, 0.2, and 0.5. The [Formula: see text] collisions are generated at center of mass energies of [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] TeV, i.e., the energies at which the LHC has operated so far, using PYTHIA and HERWIG event generators. We have also studied the average of the maximum charged-particle density versus the event multiplicity for all events, using the different pseudorapidity windows. This study prepares for the multi-particle production background expected in a future search for anomalous high-density multiplicity fluctuations using the LHC data.


1991 ◽  
Vol 50 (2) ◽  
pp. 185-194 ◽  
Author(s):  
◽  
P. Abreu ◽  
W. Adam ◽  
F. Adami ◽  
T. Adye ◽  
...  

1989 ◽  
Vol 43 (3) ◽  
pp. 357-374 ◽  
Author(s):  
◽  
R. E. Ansorge ◽  
B. �sman ◽  
L. Burow ◽  
P. Carlson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document