scholarly journals KPCA and AE Based Local-Global Feature Extraction Method for Vibration Signals of Rotating Machinery

2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Xiao Hu ◽  
Zhihuai Xiao ◽  
Dong Liu ◽  
Yongjun Tang ◽  
O. P. Malik ◽  
...  

Feature extraction plays a key role in fault diagnosis of rotating machinery. Many methods reported in the literature are based on masses of labeled data and need much prior knowledge to select the most discriminating features or establish a complex deep-learning model. To solve the dilemma, a novel feature extraction method based on kernel principal component analysis (KPCA) and an autoencoder (AE), namely, SFS-KPCA-AE, is presented in this paper to automatically extract the most discriminative features from the frequency spectrum of vibration signals. First, fast Fourier transform is calculated on the entire vibration signal to get the frequency spectrum. Next, the spectrum is divided into several segments. Then, local-global feature extraction is performed by applying KPCA to these segments. Finally, an AE is employed to obtain the low-dimensional representations of the high-dimensional global feature. The proposed feature extraction method combined with a classifier achieves fault diagnosis for rotating machinery. A rotor dataset and a bearing dataset are utilized to validate the performance of the proposed method. Experimental results demonstrate that the proposed method achieved satisfactory performance in feature extraction when training samples or motor load changed. By comparing with other methods, the superiority of the proposed SFS-KPCA-AE is verified.

Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1319
Author(s):  
Haikun Shang ◽  
Junyan Xu ◽  
Yucai Li ◽  
Wei Lin ◽  
Jinjuan Wang

Effective diagnosis of vibration fault is of practical significance to ensure the safe and stable operation of power transformers. Aiming at the traditional problems of transformer vibration fault diagnosis, a novel feature extraction method based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and multi-scale dispersion entropy (MDE) was proposed. In this paper, CEEMDAN method is used to decompose the original transformer vibration signal. Additionally, then MDE is used to capture multi-scale fault features in the decomposed intrinsic mode functions (IMFs). Next, the principal component analysis (PCA) method is employed to reduce the feature dimension and extract the effective information in vibration signals. Finally, the simplified features are sent into density peak clustering (DPC) to get the fault diagnosis results. The experimental data analysis shows that CEEMDAN-MDE can effectively extract the information of the original vibration signals and DPC can accurately diagnose the types of transformer faults. By comparing different algorithms, the practicability and superiority of this proposed method are verified.


2019 ◽  
Vol 26 (3-4) ◽  
pp. 146-160
Author(s):  
Xianzhi Wang ◽  
Shubin Si ◽  
Yongbo Li ◽  
Xiaoqiang Du

Fault feature extraction of rotating machinery is crucial and challenging due to its nonlinear and nonstationary characteristics. In order to resolve this difficulty, a quality nonlinear fault feature extraction method is required. Hierarchical permutation entropy has been proven to be a promising nonlinear feature extraction method for fault diagnosis of rotating machinery. Compared with multiscale permutation entropy, hierarchical permutation entropy considers the fault information hidden in both high frequency and low frequency components. However, hierarchical permutation entropy still has some shortcomings, such as poor statistical stability for short time series and inability of analyzing multichannel signals. To address such disadvantages, this paper proposes a new entropy method, called refined composite multivariate hierarchical permutation entropy. Refined composite multivariate hierarchical permutation entropy can extract rich fault information hidden in multichannel signals synchronously. Based on refined composite multivariate hierarchical permutation entropy and random forest, a novel fault diagnosis framework is proposed in this paper. The effectiveness of the proposed method is validated using experimental and simulated signals. The results demonstrate that the proposed method outperforms multivariate multiscale fuzzy entropy, refined composite multivariate multiscale fuzzy entropy, multivariate multiscale sample entropy, multivariate multiscale permutation entropy, multivariate hierarchical permutation entropy, and composite multivariate hierarchical permutation entropy in recognizing the different faults of rotating machinery.


2022 ◽  
Vol 167 ◽  
pp. 108524
Author(s):  
Jungho Park ◽  
Yunhan Kim ◽  
Kyumin Na ◽  
Byeng D. Youn ◽  
Yuejian Chen ◽  
...  

2014 ◽  
Vol 665 ◽  
pp. 706-711
Author(s):  
Fang Nian Wang ◽  
Shen Shen Wang ◽  
Yun Bai ◽  
Wan Fang Che

For the complexity and nonlinearity of the input characteristics in network intrusion detection system, a feature extraction method for network intrusion detection based on RS-KPCA is studied. Firstly, the Rough Set (RS) theory is used to select the valuable features, while the unnecessary features are removed. Then, the features of the intrusion detection sample data are extracted by the kernel principal component analysis (KPCA) algorithm. The number of new features is determined by the cumulative contribution rate. Simulation results show that this method can effectively remove the interference features, and has the advantages of obvious principal component feature and concentrated contribution rate, compared with PCA. Overall, the proposed method can effectively integrate the nonlinear features of the original data, reduce the dimension, and improve the intrusion detection performance.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Na Lu ◽  
Guangtao Zhang ◽  
Zhihuai Xiao ◽  
Om Parkash Malik

Feature extraction is a key procedure in the fault diagnosis of rotating machinery. To obtain fault features with lower dimensionality and higher sensitivity, a feature extraction method based on adaptive multiwavelets transform (AMWT) and local tangent space alignment (LTSA) is proposed in this paper. AMWT is first used to obtain multiple features from the vibration signals of the machine under test to form a high-dimensional feature set. Then, in order to avoid the adverse effect of the irrelevant features in this high-dimensional feature set on the fault diagnosis result, a detection index (DI) is investigated to evaluate the sensitivity of the features and those with lower sensitivity are removed. After that, LTSA is applied for feature fusion to reduce the redundant features in the high-dimensional feature set. To validate the proposed method, performance of four feature extraction schemes based on (i) wavelet and LTSA, (ii) Geronimo, Hardin, and Massopust (GHM) multiwavelets and LTSA, (iii) AMWT and principal component analysis (PCA), and (iv) AMWT and multidimensional scaling (MDS) is compared with the proposed method. The feature extraction results by these methods are then fed into K-medoids classifier to discriminate the faults. The results show that the proposed method can improve the sensitivity of the extracted features and obtain higher fault recognition rate.


2021 ◽  
Vol 63 (8) ◽  
pp. 465-471
Author(s):  
Shang Zhiwu ◽  
Yu Yan ◽  
Geng Rui ◽  
Gao Maosheng ◽  
Li Wanxiang

Aiming at the local fault diagnosis of planetary gearbox gears, a feature extraction method based on improved dynamic time warping (IDTW) is proposed. As a calibration matching algorithm, the dynamic time warping method can detect the differences between a set of time-domain signals. This paper applies the method to fault diagnosis. The method is simpler and more intuitive than feature extraction methods in the frequency domain and the time-frequency domain, avoiding their limitations and disadvantages. Due to the shortcomings of complex calculation, singularity and poor robustness, the paper proposes an improved method. Finally, the method is verified by envelope spectral feature analysis and the local fault diagnosis of gears is realised.


Sign in / Sign up

Export Citation Format

Share Document