scholarly journals Chloroplast Genome Sequences and Comparative Analyses of Combretaceae Mangroves with Related Species

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Ying Zhang ◽  
Hai-Li Li ◽  
Jun-Di Zhong ◽  
Yun Wang ◽  
Chang-Chun Yuan

In the Combretaceae family, only two species of Lumnitzera and one species of Laguncularia belong to mangroves. Among them, Lumnitzera littorea (Jack) Voigt. is an endangered mangrove plant in China for the limited occurrence and seed abortion. In contrast, Lumnitzera racemosa Willd. is known as the most widespread mangrove plant in China. Laguncularia racemosa C. F. Gaertn., an exotic mangrove in China, has the fast growth and high adaptation ability. To better understand the phylogenetic positions of these mangroves in Combretaceae and in Myrtales and to provide information for studies on evolutionary adaptation for intertidal habitat, the complete chloroplast (cp) genomes of Lu. racemosa and La. racemosa were sequenced. Furthermore, we present here the results from the assembly and annotation of the two cp genomes, which were further subjected to the comparative analysis with Lu. littorea cp genomes we published before and other eleven closely related species within Myrtales. The chloroplast genomes of the three Combretaceae mangrove species: Lu. littorea, Lu. racemosa, and La. racemosa are 159,687 bp, 159,473 bp, and 158,311 bp in size. All three cp genomes host 130 genes including 85 protein-coding genes, 37 tRNAs, and 4 rRNAs. A comparative analysis of those three genomes revealed the high similarity of genes in coding-regions and conserved gene order in the IR and LSC/SSC regions. The differences between Lumnitzera and Laguncularia cp genomes are the locations of rps19 and rpl2 genes in the IR/SC boundary regions. Investigating the effects of selection events on shared protein-coding genes showed a relaxed selection had acted on the ycf2, ycf1, and matK genes of Combretaceae mangroves compared to the nonmangrove species Eucalyptus aromaphloia. The phylogenetic analysis based on the whole chloroplast genome sequence with one outgroup species strongly supported three Combretaceae mangroves together with other two Combretaceae species formed a cluster in Combretaceae. This study is the first report on the comparative analysis of three Combretaceae mangrove chloroplast genomes, which will provide the significant information for understanding photosynthesis and evolution in Combretaceae mangrove plants.

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12268
Author(s):  
Panthita Ruang-areerate ◽  
Wasitthee Kongkachana ◽  
Chaiwat Naktang ◽  
Chutima Sonthirod ◽  
Nattapol Narong ◽  
...  

Bruguiera is a genus of true mangroves that are mostly distributed in the Indo-West Pacific region. However, the number of published whole chloroplast genome sequences of Bruguiera species are limited. Here, the complete chloroplast sequences of five Bruguiera species were sequenced and assembled using Illumina data. The chloroplast genomes of B. gymnorhiza, B. hainesii, B. cylindrica, B. parviflora and B. sexangula were assembled into 161,195, 164,295, 164,297, 163,228 and 164,170 bp, respectively. All chloroplast genomes contain 37 tRNA and eight rRNA genes, with either 84 or 85 protein-coding genes. A comparative analysis of these genomes revealed high similarity in gene structure, gene order and boundary position of the LSC, SSC and two IR regions. Interestingly, B. gymnorhiza lost a rpl32 gene in the SSC region. In addition, a ndhF gene in B. parviflora straddles both the SSC and IRB boundary regions. These genes reveal differences in chloroplast evolution among Bruguiera species. Repeats and SSRs in the chloroplast genome sequences were found to be highly conserved between B. cylindrica and B. hainesii as well as B. gymnorhiza and B. sexangula indicating close genetic relationships based on maternal inheritance. Notably, B. hainesii, which is considered a hybrid between B. gymnorhiza and B. cylindrica, appears to have inherited the chloroplast from B. cylindrica. Investigating the effects of selection events on shared protein-coding genes showed a positive selection in rps7 and rpl36 genes in all species compared to land-plant species. A phylogenetic analysis, based on 59 conserved chloroplast protein-coding genes, showed strong support that all Bruguiera species are in the clade Rhizophoraceae. This study provides valuable genetic information for the study of evolutionary relationships and population genetics in Bruguiera and other mangrove species.


2019 ◽  
Vol 42 (4) ◽  
pp. 601-611 ◽  
Author(s):  
Yan Li ◽  
Liukun Jia ◽  
Zhihua Wang ◽  
Rui Xing ◽  
Xiaofeng Chi ◽  
...  

Abstract Saxifraga sinomontana J.-T. Pan & Gornall belongs to Saxifraga sect. Ciliatae subsect. Hirculoideae, a lineage containing ca. 110 species whose phylogenetic relationships are largely unresolved due to recent rapid radiations. Analyses of complete chloroplast genomes have the potential to significantly improve the resolution of phylogenetic relationships in this young plant lineage. The complete chloroplast genome of S. sinomontana was de novo sequenced, assembled and then compared with that of other six Saxifragaceae species. The S. sinomontana chloroplast genome is 147,240 bp in length with a typical quadripartite structure, including a large single-copy region of 79,310 bp and a small single-copy region of 16,874 bp separated by a pair of inverted repeats (IRs) of 25,528 bp each. The chloroplast genome contains 113 unique genes, including 79 protein-coding genes, four rRNAs and 30 tRNAs, with 18 duplicates in the IRs. The gene content and organization are similar to other Saxifragaceae chloroplast genomes. Sixty-one simple sequence repeats were identified in the S. sinomontana chloroplast genome, mostly represented by mononucleotide repeats of polyadenine or polythymine. Comparative analysis revealed 12 highly divergent regions in the intergenic spacers, as well as coding genes of matK, ndhK, accD, cemA, rpoA, rps19, ndhF, ccsA, ndhD and ycf1. Phylogenetic reconstruction of seven Saxifragaceae species based on 66 protein-coding genes received high bootstrap support values for nearly all identified nodes, suggesting a promising opportunity to resolve infrasectional relationships of the most species-rich section Ciliatae of Saxifraga.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7713 ◽  
Author(s):  
Yong Yang ◽  
Ying Zhang ◽  
Yukai Chen ◽  
Juma Gul ◽  
Jingwen Zhang ◽  
...  

As one of the most cold and salt-tolerant mangrove species, Kandelia obovata is widely distributed in China. Here, we report the complete chloroplast genome sequence K. obovata (Rhizophoraceae) obtained via next-generation sequencing, compare the general features of the sampled plastomes of this species to those of other sequenced mangrove species, and perform a phylogenetic analysis based on the protein-coding genes of these plastomes. The complete chloroplast genome of K. obovata is 160,325 bp in size and has a 35.22% GC content. The genome has a typical circular quadripartite structure, with a pair of inverted repeat (IR) regions 26,670 bp in length separating a large single-copy (LSC) region (91,156 bp) and a small single-cope (SSC) region (15,829 bp). The chloroplast genome of K. obovata contains 128 unique genes, including 80 protein-coding genes, 38 tRNA genes, 8 rRNA genes and 2 pseudogenes (ycf1 in the IRA region and rpl22 in the IRB region). In addition, a simple sequence repeat (SSR) analysis found 108 SSR loci in the chloroplast genome of K. obovata, most of which are A/T rich. IR expansion and contraction regions were compared between K. obovata and five related species: two from Malpighiales and three mangrove species from different orders. The mVISTA results indicated that the genome structure, gene order and gene content are highly conserved among the analyzed species. The phylogenetic analysis using 54 common protein-coding genes from the chloroplast genome showed that the plant most closely related to K. obovata is Ceriops tagal of Rhizophoraceae. The results of this study provide useful molecular information about the evolution and molecular biology of these mangrove trees.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaolei Yu ◽  
Wenxiu Wang ◽  
Hongxia Yang ◽  
Xiaoying Zhang ◽  
Dan Wang ◽  
...  

Vincetoxicum versicolor (Bunge) Decne is the original plant species of the Chinese herbal medicine Cynanchi Atrati Radix et Rhizoma. The lack of information on the transcriptome and chloroplast genome of V. versicolor hinders its evolutionary and taxonomic studies. Here, the V. versicolor transcriptome and chloroplast genome were assembled and functionally annotated. In addition, the comparative chloroplast genome analysis was conducted between the genera Vincetoxicum and Cynanchum. A total of 49,801 transcripts were generated, and 20,943 unigenes were obtained from V. versicolor. One thousand thirty-two unigenes from V. versicolor were classified into 73 functional transcription factor families. The transcription factors bHLH and AP2/ERF were the most significantly abundant, indicating that they should be analyzed carefully in the V. versicolor ecological adaptation studies. The chloroplast genomes of Vincetoxicum and Cynanchum exhibited a typical quadripartite structure with highly conserved gene order and gene content. They shared an analogous codon bias pattern in which the codons of protein-coding genes had a preference for A/U endings. The natural selection pressure predominantly influenced the chloroplast genes. A total of 35 RNA editing sites were detected in the V. versicolor chloroplast genome by RNA sequencing (RNA-Seq) data, and one of them restored the start codon in the chloroplast ndhD of V. versicolor. Phylogenetic trees constructed with protein-coding genes supported the view that Vincetoxicum and Cynanchum were two distinct genera.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Samaila S. Yaradua ◽  
Dhafer A. Alzahrani ◽  
Enas J. Albokhary ◽  
Abidina Abba ◽  
Abubakar Bello

The complete chloroplast genome of J. flava, an endangered medicinal plant in Saudi Arabia, was sequenced and compared with cp genome of three Acanthaceae species to characterize the cp genome, identify SSRs, and also detect variation among the cp genomes of the sampled Acanthaceae. NOVOPlasty was used to assemble the complete chloroplast genome from the whole genome data. The cp genome of J. flava was 150, 888bp in length with GC content of 38.2%, and has a quadripartite structure; the genome harbors one pair of inverted repeat (IRa and IRb 25, 500bp each) separated by large single copy (LSC, 82, 995 bp) and small single copy (SSC, 16, 893 bp). There are 132 genes in the genome, which includes 80 protein coding genes, 30 tRNA, and 4 rRNA; 113 are unique while the remaining 19 are duplicated in IR regions. The repeat analysis indicates that the genome contained all types of repeats with palindromic occurring more frequently; the analysis also identified total number of 98 simple sequence repeats (SSR) of which majority are mononucleotides A/T and are found in the intergenic spacer. The comparative analysis with other cp genomes sampled indicated that the inverted repeat regions are conserved than the single copy regions and the noncoding regions show high rate of variation than the coding region. All the genomes have ndhF and ycf1 genes in the border junction of IRb and SSC. Sequence divergence analysis of the protein coding genes showed that seven genes (petB, atpF, psaI, rpl32, rpl16, ycf1, and clpP) are under positive selection. The phylogenetic analysis revealed that Justiceae is sister to Ruellieae. This study reported the first cp genome of the largest genus in Acanthaceae and provided resources for studying genetic diversity of J. flava as well as resolving phylogenetic relationships within the core Acanthaceae.


Author(s):  
Umar Rehman ◽  
Nighat Sultana ◽  
Abdullah . ◽  
Abbas Jamal ◽  
Maryam Muzaffar ◽  
...  

Family Phyllanthaceae is one of the largest segregates of the eudicot order Malpighiales and its species are herb, shrub, and tree, which are mostly distributed in tropical regions. Certain taxonomic discrepancies exist at genus and family level. Here, we report chloroplast genomes of three Phyllanthaceae species—Phyllanthus emblica, Flueggea virosa, and Leptopus cordifolius— and compare them with six others previously reported Phyllanthaceae chloroplast genomes. The species of Phyllanthaceae displayed quadripartite structure, comprising inverted repeat regions (IRa and IRb) that separate large single copy (LSC) and small single copy (SSC) regions. The length of complete chloroplast genome ranged from 154,707 bp to 161,093 bp; LSC from 83,627 bp to 89,932 bp; IRs from 23,921 bp to 27,128 bp; and SSC from 17,424 bp to 19,441 bp. Chloroplast genomes contained 111 to 112 unique genes, including 77 to 78 protein-coding, 30 transfer RNA (tRNA), and 4 ribosomal RNA (rRNA) that showed similarities in arrangement. The number of protein-coding genes varied due to deletion/pseudogenization of rps16 genes in Baccaurea ramiflora and Leptopus cordifolius. High variability was seen in number of oligonucleotide repeats while analysis of guanine-cytosine (GC) content, codon usage, amino acid frequency, simple sequence repeats analysis, synonymous and non-synonymous substitutions, and transition and transversion substitutions showed similarities in all Phyllanthaceae species. We detected a higher number of transition substitutions in the coding sequences than non-coding sequences. Moreover, the high number of transition substitutions was determined among the distantly related species in comparison to closely related species. Phylogenetic analysis shows the polyphyletic nature of the genus Phyllanthus which requires further verification. We also determined suitable polymorphic coding genes, including rpl22, ycf1, matK, ndhF, and rps15 which may be helpful for the reconstruction of the high-resolution phylogenetic tree of the family Phyllanthaceae using a large number of species in the future. Overall, the current study provides insight into chloroplast genome evolution in Phyllanthaceae.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248788
Author(s):  
Kyung-Ah Kim ◽  
Kyeong-Sik Cheon

Adenophora racemosa, belonging to the Campanulaceae, is an important species because it is endemic to Korea. The goal of this study was to assemble and annotate the chloroplast genome of A. racemosa and compare it with published chloroplast genomes of congeneric species. The chloroplast genome was reconstructed using de novo assembly of paired-end reads generated by the Illumina MiSeq platform. The chloroplast genome size of A. racemosa was 169,344 bp. In total, 112 unique genes (78 protein-coding genes, 30 tRNAs, and 4 rRNAs) were identified. A Maximum likelihood (ML) tree based on 76 protein-coding genes divided the five Adenophora species into two clades, showing that A. racemosa is more closely related to Adenophora stricta than to Adenophora divaricata. The gene order and contents of the LSC region of A. racemosa were identical to those of A. divaricata and A. stricta, but the structure of the SSC and IRs was unique due to IR contraction. Nucleotide diversity (Pi) >0.05 was found in eleven regions among the three Adenophora species not included in sect. Remotiflorae and in six regions between two species (A. racemosa and A. stricta).


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Wenpan Dong ◽  
Yanlei Liu ◽  
Chao Xu ◽  
Yongwei Gao ◽  
Qingjun Yuan ◽  
...  

Abstract Background Most Distylium species are endangered. Distylium species mostly display homoplasy in their flowers and fruits, and are classified primarily based on leaf morphology. However, leaf size, shape, and serration vary tremendously making it difficult to use those characters to identify most species and a significant challenge to address the taxonomy of Distylium. To infer robust relationships and develop variable markers to identify Distylium species, we sequenced most of the Distylium species chloroplast genomes. Results The Distylium chloroplast genome size was 159,041–159,127 bp and encoded 80 protein-coding, 30 transfer RNAs, and 4 ribosomal RNA genes. There was a conserved gene order and a typical quadripartite structure. Phylogenomic analysis based on whole chloroplast genome sequences yielded a highly resolved phylogenetic tree and formed a monophyletic group containing four Distylium clades. A dating analysis suggested that Distylium originated in the Oligocene (34.39 Ma) and diversified within approximately 1 Ma. The evidence shows that Distylium is a rapidly radiating group. Four highly variable markers, matK-trnK, ndhC-trnV, ycf1, and trnT-trnL, and 74 polymorphic simple sequence repeats were discovered in the Distylium plastomes. Conclusions The plastome sequences had sufficient polymorphic information to resolve phylogenetic relationships and identify Distylium species accurately.


Author(s):  
Luoyun Wang ◽  
Jing Wang ◽  
Caiyun He ◽  
Jianguo Zhang ◽  
Yanfei Zeng

Hippophae is a tree species with ecological, economic and social benefits. In this study, we assembled and annotated chloroplast genomes of sympatric Hippophae gyantsensis and H. rhamnoides subsp. yunnanensis. Their full-length are 155260 and 156415 bp, respectively. Each of them has 131 genes, comprising 85 protein-coding genes, 8 ribosomal RNA genes and 38 transfer RNA genes. After comparing the chloroplast genomes, we found 1302 base difference loci, and 63.29% are located in the intergenic region or intron sequences and 36.71% are located in the coding sequences. The SSC region has the highest mutation rate, followed by the LSC region; the IR regions have the lowest mutation rate. Among the protein-coding genes, three had a ratio of nonsynonymous to synonymous substitutions (Ka/Ks) >1 (but P values were non-significant) and 66 had Ka/Ks <1 (46 were significant). In general, the chloroplast protein-coding genes may be subject to purification selection. Among H. gyantsensis and H. rhamnoides subsp. yunnanensis chloroplast protein-coding genes, there are 20 and 16 optimal codons, respectively. Most of the optimal codons were ending with A or U, which indicates significant AT preference. It is an important reference for studies on the general characteristics and evolution of the Hippophae chloroplast genome.


Author(s):  
Kyoung Su Choi ◽  
Keum Seon Jeong ◽  
Young-Ho Ha ◽  
Kyung Choi

Genus Clematis is one of the largest within Ranunculaceae. Here we report the chloroplast genome of two Clematis species, C. brachyura and C. trichotoma endemic to Korea. The chloroplast genome lengths of C. brachyura and C. trichotoma are 159,532 bp and 159,170 bp, respectively. Gene contents in the complete chloroplast genomes of these two Clematis species are identical to that of most Ranunculaceae and other angiosperms. However, our data results demonstrated that genus Clematis has inversion and rearrangement events concerning gene rps4 gene, rps16 to trnH region, and trnL to ndhC region, and IR regions expansion. Comparison of IR regions among Ranunculaceae species revealed that Clematis species contained six protein coding genes (infA, rps8, rpl14, rpl16, rps3, and rpl22) usually found in the long single copy (LSC) region of other species. Phylogenetic analysis demonstrated that genus Clematis is closely related to genus Ranunculus. Differences in repeat structure, substitution rates, and IR expansion in genera Clematis and Ranunculus, explained their relationship. Clematis species showed slightly higher tandem repeats content than Ranunculus species. The six protein-coding genes showed lower synonymous substitution rates in the IR of Clematis species than in the LSC of Ranunculus species. Overall, the chloroplast genomes and results presented here provide important information on the evolution of Ranunculaceae.


Sign in / Sign up

Export Citation Format

Share Document