scholarly journals The First Clinical Use of Augmented Reality to Treat Salivary Stones

2020 ◽  
Vol 2020 ◽  
pp. 1-4
Author(s):  
Anna Lysenko ◽  
Alexandra Razumova ◽  
Andrey Yaremenko ◽  
Rustam Mirzakhmedov ◽  
Anna Zubareva ◽  
...  

In this study, we report our first experience of applying the concretion visualization method using augmented reality technology. A clinical case of a new surgical intervention on the parotid salivary gland with the localization of salivary stone in its parenchyma is considered. During additional diagnostics, it was found that the size of the concretion exceeds 5 mm which did not allow us to use the endoscopic technologies. That was the reason for the choice of surgical intervention external access using salivary stone visualization with the help of augmented reality. The preoperative procedures included making the upper jaw cast model, fitting the model and individual mouthguard with an X-ray contrast marker and marker slot. In addition to this, computed tomography of the head and neck using a mouthguard was made. During surgery under general anesthesia with nasal intubation, the mouthguard together with the marker is installed in the patient’s mouth and the surgeon puts on the glasses to visualize the stone image in place of its localization. This method enables to visualize the salivary stone on all surgery stages no matter what type of approach is used or performing hydropreparation. That is why using the augmented reality appears promising and is to be studied further.

2021 ◽  
Vol 18 (1) ◽  
pp. 24-30
Author(s):  
M. A. Gerasimenko ◽  
D. K. Tesakov ◽  
S. V. Makarevich ◽  
D. D. Tesakova ◽  
P. A. Bobrik ◽  
...  

The experience of using the method of 3D design and prototyping is examplified in a clinical case of surgical treatment of a six-year-old patient with kyphoscoliotic deformity of the spine due to congenital malformation of the L1 vertebra. At the stage of diagnostics and preoperative preparation, a created model of the deformed spine was used in the form of a breadboard variant made according to the data of spiral X-ray CT on a 3D printer from a plastic polymer material. The use of the created model of the deformed spine made it possible to additionally visualize and touch the pathological object in full size, to really assess the anatomical features and parameters of the interested vertebral segments and the altered spinal canal, which provided significant constructive assistance in planning surgical intervention and its immediate technical implementation.


2021 ◽  
Vol 29 (1) ◽  
pp. 67-74
Author(s):  
I.Y. Zherka ◽  
◽  
K.P. Zhiliayeva ◽  
L.V. Naumenka ◽  
Zh.V. Kaliadzich ◽  
...  

Objective. To assess the effectiveness and feasibility of using an intraoperative navigation system based on augmented reality technology in the surgical treatment of intra-orbital tumors. Methods. Two patients with intra-orbital tumors were operated on with the application of the intraoperative navigation system. The virtual volumetric model was designed on the basis of files in the Digital Imaging and Communications in Medicine (DICOM) format, taking into account the fact that the quality of reconstruction depends on the quality of the input data and the accuracy of the reconstruction system. The required structures and parameters of color rendering for inclusion in the model were selected taking into consideration a specific clinical situation. Then the model was subjected to processing and modification to facilitate visualization. The prepared and optimized model was loaded into Microsoft HoloLens2 augmented reality glasses. In the preoperative period, using the possibilities of full screen image zoom and rotation of 3D model, the planning of the surgical intervention was carried out with the participation of all members of the surgical team. Intraoperatively, a 3D skull model was superimposed on the patient along bony landmarks (lower orbital edge and nasal bones). Surgical access and surgery were performed in the projection of the visualized tumor. Results. In the first case, the surgical planningas the preoperative method of pre-visualising asurgical intervention was used by means of the possibilities of model zooming and rotating; a detailed preoperative tumor assessment was made. In the second case, the navigation system was used in the process of diagnostic orbitotomy to facilitate the access to the tumor. Conclusion. Augmented reality allows highly detail visualization of individual anatomical models. Models are interactive, adaptive to real time and manipulating does not require the special skills. The technologies are flexible and can be programmed to perform a number of tasks (diagnostics, preoperative planning and intraoperative navigation). Models might be used for surgical training of surgeons to possess the skills. What this paper adds For the first time, the possibility of a navigation system application based on augmented reality technology in the surgical treatment of intra-orbital tumors has been shown. The technique has been found to be useful both in the preoperative planning and during surgical intervention.


2020 ◽  
pp. 99-103
Author(s):  
L. M. Andreeva ◽  
G. M. Ursol ◽  
S. E. Nemazenko ◽  
V. R. Babich ◽  
S. I. Sidorenko ◽  
...  

Summary. The article describes a case of successful treatment of stomach trichobezoar complicated by a perforated stomach ulcer. Purpose of research. Optimization of diagnostics and treatment of acute surgical pathology of the gastrointestinal tract taking into account a rare etiological factor Materials and methods. A clinical case of trichobezoar in a pregnant woman, complicated by stomach perforation. Results and discussion. Attention is drawn to the problems of diagnosis and treatment of rare gastrointestinal diseases that can lead to the development of acute surgical pathology. The awareness of practitioners about the clinic, methods of timely diagnosis, prevention and treatment of this disease was assessed. to solve these tasks, a multidisciplinary approach is required, with the interaction of psychiatrists / psychoneurologists, endoscopists, x-ray diagnostic services and operating surgeons. Conclusions. The low frequency of cases of gastrointestinal bezoars causes a lack of awareness of practitioners with clinical manifestations, complications and treatment methods. Untimely diagnosis of GI bezoar can lead to severe complications that require serious surgical intervention. The probability of bezoars in mentally unbalanced patients suffering from various types of obsessive States is statistically higher than in mentally healthy individuals.


2020 ◽  
Vol 9 (2) ◽  
pp. 78-82
Author(s):  
Аndrey I. Yaremenko ◽  
Anna V. Lysenko ◽  
Elizaveta A. Ivanova ◽  
Oleg V. Galibin

Facial defects and deformations occupy a significant place in the practice of maxillofacial and dental surgeons. Nevertheless, maxillofacial surgery is developing rapidly and requires improvement of existing treatment methods, and introduction of new approaches to reconstructive surgery. Augmented reality is a promising direction of computer technology development which is actively used in medicine and education. Modern computer technology allows to create a 3D model of a lost organ and use it for preoperative planning, as well as apply a virtual model for intraoperative navigation. Recently, the method of augmented reality has been actively developed, when a virtual image of the zone of the surgical area or a dedicated organ is used, which is compared with its real prototype in static mode, or in real-time using computer devices. The benefits of using augmented reality technologies in reconstructive surgery is associated with preoperative virtual planning, simplification of the surgical intervention itself, as well as with a reduction in the risks of intra- and postoperative complications. The aim of our work was to study the opportunity of using the augmented reality technology in reconstructive surgery for microtia correction based on pre-operative computer simulation. At the preoperative stage, a photometric analysis of the patient was carried out, then a computer simulation of the missing auricle was performed. Using a 3D printer, a virtual model of the reconstructed auricle was obtained. The image in three-dimensional format was loaded into augmented reality glasses, which made it possible to project the shape and position of the simulated auricle to the area of the defect of the auricle when preparing for surgery. During the surgery, a marker was installed near the surgical field, in order to display the three-dimensional model in a destined position. During surgical intervention, an autogenous costal cartilage was taken, from which the auricle was formed using augmented reality approach and three-dimensional modeling. Subsequently, the graft was introduced to the formed bed in the area of the right ear auricle. The obtained 3D model of the auricle before the operation enabled planning of the forthcoming operation and determine the amount of autograft needed for reconstruction. Using the augmented reality glasses, the exact shape of the auricle is reproduced during the operation, and its proper position is assessed in relation to the healthy side. No complications were observed over the postoperative period. Virtual modelling of a lost or absent organ based on a preoperative examination provides important information about its spatial structure. Preoperative virtual planning allows you to predict the individual features of the operation, its difficult stages, to anticipate possible complications. The use of augmented reality technology during reconstructive surgery is a promising method requiring further development and improvement.


Author(s):  
Тетяна Грунтова ◽  
Юлія Єчкало ◽  
Андрій Стрюк ◽  
Андрій Пікільняк

Hruntova T. V., Yechkalo YU. V., Stryuk A. M. and Pikilʹnyak A. V. Augmented Reality Tools in Physics Training at Higher Technical Educational Institutions. Research goal: the research is aimed at theoretical substantiation of applying the augmented reality technology and its peculiarities at higher technical educational institutions. Research objectives: the research is to solve the problems of determining the role and place of the technology in the educational process and its possible application to physics training. Object of research: teaching physics to students of higher technical educational institutions. Subject of research: the augmented reality technology as a component of the training process at higher educational institutions. Research methods used: theoretical methods include analysis of scientific and methodological literature; empirical methods include studying and observation of the training process. Research results: analysis of scientific publications allows defining the notion of augmented reality; application of augmented reality objects during laboratory practical works on physics is suggested. Main conclusions. introduction of the augmented reality technology in thetraining process at higher technical educational institutions increases learning efficiency, facilitates students’ training and cognitive activities, improves the quality of knowledge acquisition, provokes interest in a subject, promotesdevelopment of research skills and a future specialist’s competent personality.


Sign in / Sign up

Export Citation Format

Share Document