scholarly journals A Systematic Analysis Revealed the Potential Gene Regulatory Processes of ATRA-Triggered Neuroblastoma Differentiation and Identified a Novel RA Response Sequence in the NTRK2 Gene

2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Liyuan Guo ◽  
Wei Lin ◽  
Yidan Zhang ◽  
Jing Wang

Retinoic acid- (RA-) triggered neuroblastoma cell lines are widely used cell modules of neuronal differentiation in neurodegenerative disease studies, but the gene regulatory mechanism underlying differentiation is unclear now. In this study, system biological analysis was performed on public microarray data from three neuroblastoma cell lines (SK-N-SH, SH-SY5Y-A, and SH-SY5Y-E) to explore the potential molecular processes of all-trans retinoic acid- (ATRA-) triggered differentiation. RT-qPCR, functional genomics analysis, western blotting, chromatin immunoprecipitation (ChIP), and homologous sequence analysis were further performed to validate the gene regulation processes and identify the RA response element in a specific gene. The potential disturbed biological pathways (111 functional GO terms in 14 interactive functional groups) and gene regulatory network (10 regulators and 71 regulated genes) in neuroblastoma differentiation were obtained. 15 of the 71 regulated genes are neuronal projection-related. Among them, NTRK2 is the only one that was dramatically upregulated in the RT-qPCR test that we performed on ATRA-treated SH-SY5Y-A cells. We further found that the overexpression of the NTRK2 gene can trigger differentiation-like changes in SH-SY5Y-A cells. Functional genomic analysis and western blotting assay suggested that, in neuroblastoma cells, ATRA may directly regulate the NTRK2 gene by activating the RA receptor (RAR) that binds in its promoter region. A novel RA response DNA element in the NTRK2 gene was then identified by bioinformatics analysis and chromatin immunoprecipitation (ChIP) assay. The novel element is sequence conservation and position variation among different species. Our study systematically provided the potential regulatory information of ATRA-triggered neuroblastoma differentiation, and in the NTRK2 gene, we identified a novel RA response DNA element, which may contribute to the differentiation in a human-specific manner.

2019 ◽  
Author(s):  
Kristen Upton ◽  
Apexa Modi ◽  
Khushbu Patel ◽  
Karina L. Conkrite ◽  
Robyn T. Sussman ◽  
...  

AbstractUnderstanding the aberrant transcriptional landscape of neuroblastoma is necessary to provide insight to the underlying influences of the initiation, progression and persistence of this developmental cancer. Here, we present chromatin immunoprecipitation sequencing (ChIP-Seq) data for the oncogenic transcription factors, MYCN and MYC, as well as regulatory histone marks H3K4me1, H3K4me3, H3K27Ac, and H3K27me3 in ten commonly used human neuroblastoma-derived cell line models. In addition, for all of the profiled cell lines we provide ATAC-Seq as a measure of open chromatin. We validate specificity of global MYCN occupancy in MYCN amplified cell lines and functional redundancy of MYC occupancy in MYCN non-amplified cell lines. Finally, we show with H3K27Ac ChIP-Seq that these cell lines retain expression of key neuroblastoma super-enhancers (SE). We anticipate this dataset, coupled with available transcriptomic profiling on the same cell lines, will enable the discovery of novel gene regulatory mechanisms in neuroblastoma.


1989 ◽  
Vol 9 (10) ◽  
pp. 4337-4344
Author(s):  
S E Bates ◽  
L A Mickley ◽  
Y N Chen ◽  
N Richert ◽  
J Rudick ◽  
...  

Expression of a multidrug resistance gene (mdr1) and its protein product, P-glycoprotein (Pgp), has been correlated with the onset of multidrug resistance in vitro in human cell lines selected for resistance to chemotherapeutic agents derived from natural products. Expression of this gene has also been observed in normal tissues and human tumors, including neuroblastoma. We therefore examined total RNA prepared from human neuroblastoma cell lines before and after differentiation with retinoic acid or sodium butyrate. An increase in the level of mdr1 mRNA was observed after retinoic acid treatment of four neuroblastoma cell lines, including the SK-N-SH cell line. Western blot (immunoblot) analysis demonstrated concomitant increases in Pgp. However, studies of 3H-vinblastine uptake failed to show a concomitant Pgp-mediated decrease in cytotoxic drug accumulation. To provide evidence that Pgp was localized on the cell surface, an immunotoxin conjugate directed against Pgp was added to cells before and after treatment with retinoic acid. Incorporation of [3H]leucine was decreased by the immunotoxin in the retinoic acid-treated cells compared with the undifferentiated cells. These results demonstrate that whereas expression of the mdr1 gene can be modulated by differentiating agents, increased levels of expression are not necessarily associated with increased cytotoxic drug accumulation.


Sign in / Sign up

Export Citation Format

Share Document