scholarly journals On the Group Controllability of Leader-Based Continuous-Time Multiagent Systems

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Bo Liu ◽  
Licheng Wu ◽  
Rong Li ◽  
Housheng Su ◽  
Yue Han

The group controllability of continuous-time multiagent systems (MASs) with multiple leaders is considered in this paper, where the entire group is compartmentalized into a few subgroups. The group controllability concept of continuous-time MASs with multiple leaders is put forward, and the group controllability criteria are obtained for switching and fixed topologies, respectively. Finally, the numerical simulations are given to prove the validity of the theoretical results.

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Bo Liu ◽  
Qing An ◽  
Licheng Wu ◽  
Rong Li ◽  
Housheng Su ◽  
...  

The group controllability is a unique distinct perspective and a further generalization of the controllability problem of discrete-time time-delayed multiagent systems (MASs) with multiple leaders. The group controllability concept of discrete-time time-delayed MASs with multiple leaders is proposed, its equivalent augmented system without time delay is reformulated, and the group controllability criteria are obtained in this paper. Numerical simulations are presented finally.


2011 ◽  
Vol 2011 ◽  
pp. 1-11
Author(s):  
Xin-Lei Feng ◽  
Ting-Zhu Huang ◽  
Jin-Liang Shao

For second-order and high-order dynamic multiagent systems with multiple leaders, the coordination schemes that all the follower agents flock to the polytope region formed by multiple leaders are considered. Necessary and sufficient conditions which the follower agents can enter the polytope region by the leaders are obtained. Finally, numerical examples are given to illustrate our theoretical results.


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Runsha Dong

This paper concerns the problem of consensus tracking for multiagent systems with a dynamical leader. In particular, it proposes the corresponding explicit control laws for multiple first-order nonlinear systems, second-order nonlinear systems, and quite general nonlinear systems based on the leader-follower and the tree shaped network topologies. Several numerical simulations are given to verify the theoretical results.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Hong Xia ◽  
Ting-Zhu Huang ◽  
Jin-Liang Shao ◽  
Jun-Yan Yu

A formation control problem for second-order multiagent systems with time-varying delays is considered. First, a leader-following consensus protocol is proposed for theoretical preparation. With the help of Lyapunov-Krasovskii functional, a sufficient condition under this protocol is derived for stability of the multiagent systems. Then, the protocol is extended to the formation control based on a multiple leaders’ architecture. It is shown that the agents will attain the expected formation. Finally, some simulations are provided to demonstrate the effectiveness of our theoretical results.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Hong-yong Yang ◽  
Lei Guo ◽  
Banghai Xu ◽  
Jian-zhong Gu

Because of the complexity of the practical environments, many distributed multiagent systems cannot be illustrated with the integer-order dynamics and can only be described with the fractional-order dynamics. In this paper, collaboration control problems of continuous-time networked fractional-order multiagent systems via sampled control and sampling delay are investigated. Firstly, the sampled-data control of multiagent systems with fractional-order derivative operator is analyzed in a directed weighted network ignoring sampling delay. Then, the collaborative control of fractional-order multiagent systems with sampled data and sampling delay is studied in a directed and symmetrical network. Many sufficient conditions for reaching consensus with sampled data and sampling delay are obtained. Some numerical simulations are presented to illustrate the utility of our theoretical results.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Bo Liu ◽  
Hongke Feng ◽  
Li Wang ◽  
Rong Li ◽  
Junyan Yu ◽  
...  

This paper proposes a new second-order discrete-time multiagent model and addresses the controllability of second-order multiagent system with multiple leaders and general dynamics. The leaders play an important role in governing the other member agents to achieve any desired configuration. Some sufficient and necessary conditions are given for the controllability of the second-order multiagent system. Moreover, the speed controllability of the second-order multiagent system with general dynamics is discussed. Particularly, it is shown that the controllability of the whole system relies on the number of leaders and the connectivity between the leaders and the members. Numerical examples illustrate the theoretical results.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Zhao-Jun Tang ◽  
Ting-Zhu Huang ◽  
Jin-Liang Shao

We consider the distributed containment control of multiagent systems with multiple stationary leaders and noisy measurements. A stochastic approximation type and consensus-like algorithm is proposed to solve the containment control problem. We provide conditions under which all the followers can converge both almost surely and in mean square to the stationary convex hull spanned by the leaders. Simulation results are provided to illustrate the theoretical results.


2020 ◽  
Vol 23 (2) ◽  
pp. 553-570 ◽  
Author(s):  
Li Ma

AbstractThis paper is devoted to the investigation of the kinetics of Hadamard-type fractional differential systems (HTFDSs) in two aspects. On one hand, the nonexistence of non-trivial periodic solutions for general HTFDSs, which are considered in some functional spaces, is proved and the corresponding eigenfunction of Hadamard-type fractional differential operator is also discussed. On the other hand, by the generalized Gronwall-type inequality, we estimate the bound of the Lyapunov exponents for HTFDSs. In addition, numerical simulations are addressed to verify the obtained theoretical results.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Ali El Myr ◽  
Abdelaziz Assadouq ◽  
Lahcen Omari ◽  
Adel Settati ◽  
Aadil Lahrouz

We investigate the conditions that control the extinction and the existence of a unique stationary distribution of a nonlinear mathematical spread model with stochastic perturbations in a population of varying size with relapse. Numerical simulations are carried out to illustrate the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document