scholarly journals Pavement Crack Detection and Segmentation Method Based on Improved Deep Learning Fusion Model

2020 ◽  
Vol 2020 ◽  
pp. 1-22
Author(s):  
Xiaoran Feng ◽  
Liyang Xiao ◽  
Wei Li ◽  
Lili Pei ◽  
Zhaoyun Sun ◽  
...  

Pavement damage is the main factor affecting road performance. Pavement cracking, a common type of road damage, is a key challenge in road maintenance. In order to achieve an accurate crack classification, segmentation, and geometric parameter calculation, this paper proposes a method based on a deep convolutional neural network fusion model for pavement crack identification, which combines the advantages of the multitarget single-shot multibox detector (SSD) convolutional neural network model and the U-Net model. First, the crack classification and detection model is applied to classify the cracks and obtain the detection confidence. Next, the crack segmentation network is applied to accurately segment the pavement cracks. By improving the feature extraction structure and optimizing the hyperparameters of the model, pavement crack classification and segmentation accuracy were improved. Finally, the length and width (for linear cracks) and the area (for alligator cracks) are calculated according to the segmentation results. Test results show that the recognition accuracy of the pavement crack identification method for transverse, longitudinal, and alligator cracks is 86.8%, 87.6%, and 85.5%, respectively. It is demonstrated that the proposed method can provide the category information for pavement cracks as well as the accurate positioning and geometric parameter information, which can be used directly for evaluating the pavement condition.

Author(s):  
Liyang Xiao ◽  
Wei Li ◽  
Ju Huyan ◽  
Zhaoyun Sun ◽  
Susan Tighe

This paper aims to develop a method of crack grid detection based on convolutional neural network. First, an image denoising operation is conducted to improve image quality. Next, the processed images are divided into grids of different, and each grid is fed into a convolutional neural network for detection. The pieces of the grids with cracks are marked and then returned to the original images. Finally, on the basis of the detection results, threshold segmentation is performed only on the marked grids. Information about the crack parameters is obtained via pixel scanning and calculation, which realises complete crack detection. The experimental results show that 30×30 grids perform the best with the accuracy value of 97.33%. The advantage of automatic crack grid detection is that it can avoid fracture phenomenon in crack identification and ensure the integrity of cracks.


2020 ◽  
pp. 147592172093238
Author(s):  
Muhammad Rakeh Saleem ◽  
Jong-Woong Park ◽  
Jin-Hwan Lee ◽  
Hyung-Jo Jung ◽  
Muhammad Zohaib Sarwar

The structural condition of bridges is generally assessed using manual visual inspection. However, this approach consumes labor, time, and capital, and produces subjective results. Therefore, industries today are using automated visual inspection approaches, which quantify and localize damages such as cracks using robots and computer vision. This paper proposes an instant damage identification and localization approach that uses an image capturing and geo-tagging system and deep convolutional neural network for crack detection. The image capturing and geo-tagging allows the geo-tagging of three-dimensional coordinates and camera pose data with bridge inspection images; the deep convolutional neural network is trained for automated crack identification. The damages extracted by the convolutional neural network are instantly transformed into a global bridge damage map, with georeferencing data acquired using the image capturing and geo-tagging. This method is experimentally validated through a lab-scale test on a wall and a field test on a bridge to demonstrate the performance of the instant damage map.


2018 ◽  
Vol 232 ◽  
pp. 01053
Author(s):  
Wei Wang ◽  
Qing Li

Aiming at the low efficiency and poor anti-interference ability of traditional non-destructive testing technology in steel plate crack detection, a crack recognition method based on convolutional neural network for infrared thermal imager is proposed. Firstly, a rolling electric heating rod is developed as a thermal excitation source, and a new excitation method was used to thermally excite the surface to be inspected. Then, according to the principle of abnormal temperature generated during the heat transfer process, the temperature of the detected surface is analyzed. It is concluded that the temperature gradient on both sides of the crack is always the largest. Finally, the infrared thermal image after thermal excitation is collected as a training sample, and a convolutional neural network is built to train the sample. Experiments show that the convolutional neural network model can accurately identify the infrared image cracks. The detection efficiency is high and the robustness is strong. And the recognition accuracy on the test set reaches 96.82%.


2019 ◽  
Vol 9 (14) ◽  
pp. 2867 ◽  
Author(s):  
Hongyan Xu ◽  
Xiu Su ◽  
Yi Wang ◽  
Huaiyu Cai ◽  
Kerang Cui ◽  
...  

Concrete bridge crack detection is critical to guaranteeing transportation safety. The introduction of deep learning technology makes it possible to automatically and accurately detect cracks in bridges. We proposed an end-to-end crack detection model based on the convolutional neural network (CNN), taking the advantage of atrous convolution, Atrous Spatial Pyramid Pooling (ASPP) module and depthwise separable convolution. The atrous convolution obtains a larger receptive field without reducing the resolution. The ASPP module enables the network to extract multi-scale context information, while the depthwise separable convolution reduces computational complexity. The proposed model achieved a detection accuracy of 96.37% without pre-training. Experiments showed that, compared with traditional classification models, the proposed model has a better performance. Besides, the proposed model can be embedded in any convolutional network as an effective feature extraction structure.


2021 ◽  
Vol 38 (4) ◽  
pp. 1253-1257
Author(s):  
Lehai Zhong ◽  
Jiao Li ◽  
Feifan Zhou ◽  
Xiaoan Bao ◽  
Weiyin Xing ◽  
...  

The current target tracking and detection algorithms often have mistakes and omissions when the target is occluded or small. To overcome the defects, this paper integrates bi-directional feature pyramid network (BiFPN) into cascade region-based convolutional neural network (R-CNN) for live object tracking and detection. Specifically, the BiFPN structure was utilized to connect between scales and fuse weighted features more efficiently, thereby enhancing the network’s feature extraction ability, and improving the detection effect on occluded and small targets. The proposed method, i.e., Cascade R-CNN fused with BiFPN, was compared with target detection algorithms like Cascade R-CNN and single shot detection (SSD) on a video frame dataset of wild animals. Our method achieved a mean average precision (mAP) of 91%, higher than that of SSD and Cascade R-CNN. Besides, it only took 0.42s for our method to detect each image, i.e., the real-time detection was realized. Experimental results prove that the proposed live object tracking and detection model, i.e., Cascade R-CNN fused with BiFPN, can adapt well to the complex detection environment, and achieve an excellent detection effect.


2020 ◽  
pp. 147592172094843
Author(s):  
Shanglian Zhou ◽  
Wei Song

By providing accurate and efficient crack detection and localization, image-based crack detection methodologies can facilitate the decision-making and rehabilitation of the roadway infrastructure. Deep convolutional neural network, as one of the most prevailing image-based methodologies on object recognition, has been extensively adopted for crack classification tasks in the recent decade. For most of the current deep convolutional neural network–based techniques, either intensity or range image data are utilized to interpret the crack presence. However, the complexities in real-world data may impair the robustness of deep convolutional neural network architecture in its ability to analyze image data with various types of disturbances, such as low contrast in intensity images and shallow cracks in range images. The detection performance under these disturbances is important to protect the investment in infrastructure, as it can reveal the trend of crack evolution and provide information at an early stage to promote precautionary measures. This article proposes novel deep convolutional neural network–based roadway classification tools and investigates their performance from the perspective of using heterogeneous image fusion. A vehicle-mounted laser imaging system is adopted for data acquisition (DAQ) on concrete roadways with a depth resolution of 0.1 mm and an accuracy of 0.4 mm. In total, four types of image data including raw intensity, raw range, filtered range, and fused raw image data are utilized to train and test the deep convolutional neural network architectures proposed in this study. The experimental cases demonstrate that the proposed data fusion approach can reduce false detections and thus results in an improvement of 4.5%, 1.2%, and 0.7% in the F-measure value, respectively, compared to utilizing the raw intensity, raw range, and filtered range image data for analysis. Furthermore, in another experimental case, two novel deep convolutional neural network architectures proposed in this study are compared to exploit the fused raw image data, and the one leading to better classification performance is determined.


2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Liming Li ◽  
Shubin Zheng ◽  
Chenxi Wang ◽  
Shuguang Zhao ◽  
Xiaodong Chai ◽  
...  

This work presents a new method for sleeper crack identification based on cascade convolutional neural network (CNN) to address the problem of low efficiency and poor accuracy in the traditional detection method of sleeper crack identification. The proposed algorithm mainly includes improved You Only Look Once version 3 (YOLOv3) and the crack recognition network, where the crack recognition network includes two modules, the crack encoder-decoder network (CEDNet) and the crack residual refinement network (CRRNet). The improved YOLOv3 network is used to identify and locate cracks on sleepers and segment them after the sleeper on the ballast bed is extracted by using the gray projection method. The sleeper is inputted into CEDNet for crack feature extraction to predict the coarse crack saliency map. The prediction graph is inputted into CRRNet to improve its edge information and local region to achieve optimization. The accuracy of the crack identification model is improved by using a mixed loss function of binary cross-entropy (BCE), structural similarity index measure (SSIM), and intersection over union (IOU). Results show that this method can accurately detect the sleeper crack image. During object detection, the proposed method is compared with YOLOv3 in terms of directly locating sleeper cracks. It has an accuracy of 96.3%, a recall rate of 91.2%, a mean average precision (mAP) of 91.5%, and frames per second (FPS) of 76.6/s. In the crack extraction part, the F-weighted is 0.831, mean absolute error (MAE) is 0.0157, and area under the curve (AUC) is 0.9453. The proposed method has better recognition, higher efficiency, and robustness compared with the other network models.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1688
Author(s):  
Luqman Ali ◽  
Fady Alnajjar ◽  
Hamad Al Jassmi ◽  
Munkhjargal Gochoo ◽  
Wasif Khan ◽  
...  

This paper proposes a customized convolutional neural network for crack detection in concrete structures. The proposed method is compared to four existing deep learning methods based on training data size, data heterogeneity, network complexity, and the number of epochs. The performance of the proposed convolutional neural network (CNN) model is evaluated and compared to pretrained networks, i.e., the VGG-16, VGG-19, ResNet-50, and Inception V3 models, on eight datasets of different sizes, created from two public datasets. For each model, the evaluation considered computational time, crack localization results, and classification measures, e.g., accuracy, precision, recall, and F1-score. Experimental results demonstrated that training data size and heterogeneity among data samples significantly affect model performance. All models demonstrated promising performance on a limited number of diverse training data; however, increasing the training data size and reducing diversity reduced generalization performance, and led to overfitting. The proposed customized CNN and VGG-16 models outperformed the other methods in terms of classification, localization, and computational time on a small amount of data, and the results indicate that these two models demonstrate superior crack detection and localization for concrete structures.


Sign in / Sign up

Export Citation Format

Share Document