scholarly journals Fuzzy Ideal Supra Topological Spaces

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Fadhil Abbas

In this paper, we introduce the notion of fuzzy ideals in fuzzy supra topological spaces. The concept of a fuzzy s-local function is also introduced here by utilizing the s-neighbourhood structure for a fuzzy supra topological space. These concepts are discussed with a view to find new fuzzy supra topologies from the original one. The basic structure, especially a basis for such generated fuzzy supra topologies, and several relations between different fuzzy ideals and fuzzy supra topologies are also studied here. Moreover, we introduce a fuzzy set operator Ψ S and study its properties. Finally, we introduce some sets of fuzzy ideal supra topological spaces (fuzzy ∗ -supra dense-in-itself sets, fuzzy S ∗ -supra closedsets, fuzzy ∗ -supra perfect sets, fuzzy regular-I-supra closedsets, fuzzy-I-supra opensets, fuzzy semi-I-supra opensets, fuzzy pre-I-supra opensets, fuzzy α -I-supra opensets, and fuzzy β -I-supra opensets) and study some characteristics of these sets, and then, we introduce some fuzzy ideal supra continuous functions.

2020 ◽  
Author(s):  
Fadhil Abbas

Abstract In this paper, we introduce the notion of fuzzy ideals in fuzzy supra topological spaces. The concept of a fuzzy s-local function is also introduced here by utilizing the s-neighbourhood structure for a fuzzy supra topological space. These concepts are discussed with a view to nd new fuzzy supra topologies from the original one. The basic structure, especially a basis for such generated fuzzy supra topologies and several relations between different fuzzy ideals and fuzzy supra topologies are also studied here. Moreover, we introduce a fuzzy set operator ΨS and study its properties. Finally, we introduce some sets of fuzzy ideal supra topological spaces (fuzzy *-supra dense-in-itself sets, fuzzy S*-supra closed sets, fuzzy *-supra perfect sets, fuzzy regular-I-supra closed sets, fuzzy-I-supra open sets, fuzzy semi-I-supra open sets, fuzzy pre-I-supra open sets, fuzzy α-I-supra open sets, fuzzy β-I-supra open sets) and study some characteristics of theses sets and then we introduce some fuzzy ideal supra continuous functions.


2004 ◽  
Vol 2004 (70) ◽  
pp. 3829-3837
Author(s):  
Doğan Çoker ◽  
A. Haydar Eş ◽  
Necla Turanli

The purpose of this paper is to prove a Tychonoff theorem in the so-called “intuitionistic fuzzy topological spaces.” After giving the fundamental definitions, such as the definitions of intuitionistic fuzzy set, intuitionistic fuzzy topology, intuitionistic fuzzy topological space, fuzzy continuity, fuzzy compactness, and fuzzy dicompactness, we obtain several preservation properties and some characterizations concerning fuzzy compactness. Lastly we give a Tychonoff-like theorem.


Author(s):  
Hind Fadhil Abbas

The fusion of technology and science is a very complex and scientific phenomenon that still carries mysteries that need to be understood. To unravel these phenomena, mathematical models are beneficial to treat different systems with unpredictable system elements. Here, the generalized intuitionistic fuzzy ideal is studied with topological space. These concepts are useful to analyze new generalized intuitionistic models. The basic structure is studied here with various relations between the generalized intuitionistic fuzzy ideals and the generalized intuitionistic fuzzy topologies. This study includes intuitionistic fuzzy topological spaces (IFS); the fundamental definitions of intuitionistic fuzzy Hausdorff space; intuitionistic fuzzy regular space; intuitionistic fuzzy normal space; intuitionistic fuzzy continuity; operations on IFS, the compactness and separation axioms.


2013 ◽  
Vol 2 ◽  
pp. 11-15
Author(s):  
Bidyanand Prasad ◽  
BP Kumar

This paper is concerned with the introduction of an infinite positional game of pursuit and evasion over an ideal of a topological space. A topological game has been played over some new D-product and C-product spaces of two Hausdorff topological spaces. Perfect information, decisions and goals in a game may not be feasible. Hence, fuzzy set theory has been applied in this paper to obtain better results. Academic Voices, Vol. 2, No. 1, 2012, Pages 11-15 DOI: http://dx.doi.org/10.3126/av.v2i1.8278


2004 ◽  
Vol 2004 (69) ◽  
pp. 3799-3816
Author(s):  
S. K. Acharyya ◽  
K. C. Chattopadhyay ◽  
Partha Pratim Ghosh

The main aim of this paper is to provide a construction of the Banaschewski compactification of a zero-dimensional Hausdorff topological space as a structure space of a ring of ordered field-valued continuous functions on the space, and thereby exhibit the independence of the construction from any completeness axiom for an ordered field. In the process of describing this construction we have generalized the classical versions of M. H. Stone's theorem, the Banach-Stone theorem, and the Gelfand-Kolmogoroff theorem. The paper is concluded with a conjecture of a split in the class of all zero-dimensional but not strongly zero-dimensional Hausdorff topological spaces into three classes that are labeled by inequalities between three compactifications ofX, namely, the Stone-Čech compactificationβX, the Banaschewski compactificationβ0X, and the structure space𝔐X,Fof the lattice-ordered commutative ringℭ(X,F)of all continuous functions onXtaking values in the ordered fieldF, equipped with its order topology. Some open problems are also stated.


The main view of this article is the extended version of the fine topological space to the novel kind of space say fine fuzzy topological space which is developed by the notion called collection of quasi coincident of fuzzy sets. In this connection, fine fuzzy closed sets are introduced and studied some features on it. Further, the relationship between fine fuzzy closed sets with certain types of fine fuzzy closed sets are investigated and their converses need not be true are elucidated with necessary examples. Fine fuzzy continuous function is defined as the inverse image of fine fuzzy closed set is fine fuzzy closed and its interrelations with other types of fine fuzzy continuous functions are obtained. The reverse implication need not be true is proven with examples. Finally, the applications of fine fuzzy continuous function are explained by using the composition.


2021 ◽  
Vol 9 (1) ◽  
pp. 250-263
Author(s):  
V. Mykhaylyuk ◽  
O. Karlova

In 1932 Sierpi\'nski proved that every real-valued separately continuous function defined on the plane $\mathbb R^2$ is determined uniquely on any everywhere dense subset of $\mathbb R^2$. Namely, if two separately continuous functions coincide of an everywhere dense subset of $\mathbb R^2$, then they are equal at each point of the plane. Piotrowski and Wingler showed that above-mentioned results can be transferred to maps with values in completely regular spaces. They proved that if every separately continuous function $f:X\times Y\to \mathbb R$ is feebly continuous, then for every completely regular space $Z$ every separately continuous map defined on $X\times Y$ with values in $Z$ is determined uniquely on everywhere dense subset of $X\times Y$. Henriksen and Woods proved that for an infinite cardinal $\aleph$, an $\aleph^+$-Baire space $X$ and a topological space $Y$ with countable $\pi$-character every separately continuous function $f:X\times Y\to \mathbb R$ is also determined uniquely on everywhere dense subset of $X\times Y$. Later, Mykhaylyuk proved the same result for a Baire space $X$, a topological space $Y$ with countable $\pi$-character and Urysohn space $Z$. Moreover, it is natural to consider weaker conditions than separate continuity. The results in this direction were obtained by Volodymyr Maslyuchenko and Filipchuk. They proved that if $X$ is a Baire space, $Y$ is a topological space with countable $\pi$-character, $Z$ is Urysohn space, $A\subseteq X\times Y$ is everywhere dense set, $f:X\times Y\to Z$ and $g:X\times Y\to Z$ are weakly horizontally quasi-continuous, continuous with respect to the second variable, equi-feebly continuous wuth respect to the first one and such that $f|_A=g|_A$, then $f=g$. In this paper we generalize all of the results mentioned above. Moreover, we analize classes of topological spaces wich are favorable for Sierpi\'nsi-type theorems.


1972 ◽  
Vol 24 (3) ◽  
pp. 379-389 ◽  
Author(s):  
Anthony W. Hager

All topological spaces shall be uniformizable (completely regular Hausdorff). A uniformity on X shall be viewed as a collection μ of coverings of X, via the manner of Tukey [20] and Isbell [16], and the associated uniform space denoted μX. Given the uniformizable topological space X, we shall be concerned with compatible uniformities as follows (discussed more carefully in § 1). The fine uniformity α (finest compatible with the topology); the “cardinal reflections“ αm of α (m an infinite cardinal number) ; αc, the weak uniformity generated by the real-valued continuous functions.With μ standing, generically, for one of these uniformities, we consider the question: when is μ(X × Y) = μX × μY For μ = αℵ0 (the finest compatible precompact uniformity), the problem is equivalent to that of whenβ(X × Y) = βX × βY,β denoting Stone-Cech compactification; this is answered by the theorem of Glicksberg [9]. For μ = α, we have Isbell's generalization [16, VI1.32].


The aim of this paper is to introduce the notation of pre-local function A^(p^* )(I, ?) by using pre-open sets in an ideal topological space (X, ?, I). Some properties and characterizations of a pre-local function are explored Pre-compatible spaces are also defined and investigated. Moreover, by using A^(p^* )(I, ?) we introduce an operator ?: P(X)?? satisfying ?(A) = X-?(X-A)?^(p^* )for each A ? P(X) and we discuss some characterizations this operator by use pre-open sets.


Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 193 ◽  
Author(s):  
Yaser Saber ◽  
Fahad Alsharari ◽  
Florentin Smarandache

Neutrosophy is a recent section of philosophy. It was initiated in 1980 by Smarandache. It was presented as the study of origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. In this paper, we introduce the notion of single-valued neutrosophic ideals sets in Šostak’s sense, which is considered as a generalization of fuzzy ideals in Šostak’s sense and intuitionistic fuzzy ideals. The concept of single-valued neutrosophic ideal open local function is also introduced for a single-valued neutrosophic topological space. The basic structure, especially a basis for such generated single-valued neutrosophic topologies and several relations between different single-valued neutrosophic ideals and single-valued neutrosophic topologies, are also studied here. Finally, for the purpose of symmetry, we also define the so-called single-valued neutrosophic relations.


Sign in / Sign up

Export Citation Format

Share Document