scholarly journals Shear Strength Prediction for SFRC Shear Wall with CFST Columns by Softened Strut and Tie Model

2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Peibo You ◽  
Shuaiqi Song ◽  
Haiyang Zhang ◽  
Lijuan Zhang ◽  
Ke Shi ◽  
...  

The steel fiber reinforced concrete (SFRC) shear wall with concrete filled steel tube (CFST) columns is an innovative composite structure. In order to calculate the shear strength of SFRC shear wall with CFST columns, the softened strut and tie model (SSTM) of SFRC shear wall with CFST columns was proposed based on the analysis of shear mechanism of SFRC shear wall with CFST columns. The SSTM was composed of diagonal, horizontal, and vertical mechanisms, in which the contributions of concrete, reinforcement, and steel fiber to the shear strength of SFRC web of shear wall were identified. The shear capacities of 24 shear walls were calculated and compared with the available test results, and reasonable agreement was obtained. The results also showed that the steel fibers distributed randomly in concrete could be treated as longitudinal and transverse reinforcement in the shear strength analysis of SFRC web, and the SSTM was reasonable and useful to analyze and predict the shear strength of SFRC shear wall with CFST columns.

2013 ◽  
Vol 438-439 ◽  
pp. 682-685
Author(s):  
Jun Zhao ◽  
Meng Yao

Through low cycle reverse tests of three steel fiber reinforced concrete coupled shear walls, the crack pattern, bearing capacity, stiffness and displacement are analyzed. Test results show that the bearing capacity, yielding stiffness and the anti-crack performance of the coupled shear walls are generally improved by adding steel fibers to reinforced concrete coupling beams, and the stiffness degeneration is also reduced to a certain degree. More cracks are induced by steel fibers bridged the main crack, which can make the shear wall consume more energy.


2019 ◽  
Vol 9 (22) ◽  
pp. 4790 ◽  
Author(s):  
Wisena Perceka ◽  
Wen-Cheng Liao ◽  
Yung-Fu Wu

Conducting research on steel fiber-reinforced concrete (SFRC) beams without stirrups, particularly the SFRC beams with high-strength concrete (HSC) and high-strength steel (HSS) reinforcing bars is essential due to the limitation of test results of high strength SFRC beams with high strength steel reinforcing bars. Eight shear strength prediction equations for analysis and design of the SFRC beam derived by different researchers are summarized. A database was constructed from 236 beams. Accordingly, the previous shear strength equations can be evaluated. Ten high-strength SFRC beams subjected to monotonic loading were prepared to verify the existing shear strength prediction equations. The equations for predicting shear strength of the SFRC beam are proposed on the basis of observations from the test results and evaluation results of the previous shear strength equations. The proposed shear strength equation possesses a reasonable result. For alternative analysis and design of the SFRC beams, ACI 318-19 shear strength equation is modified to consider steel fiber parameters.


Sign in / Sign up

Export Citation Format

Share Document