scholarly journals An Antiforensic Method against AMR Compression Detection

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Diqun Yan ◽  
Xiaowen Li ◽  
Li Dong ◽  
Rangding Wang

Adaptive multirate (AMR) compression audio has been exploited as an effective forensic evidence to justify audio authenticity. Little consideration has been given, however, to antiforensic techniques capable of fooling AMR compression forensic algorithms. In this paper, we present an antiforensic method based on generative adversarial network (GAN) to attack AMR compression detectors. The GAN framework is utilized to modify double AMR compressed audio to have the underlying statistics of single compressed one. Three state-of-the-art detectors of AMR compression are selected as the targets to be attacked. The experimental results demonstrate that the proposed method is capable of removing the forensically detectable artifacts of AMR compression under various ratios with an average successful attack rate about 94.75%, which means the modified audios generated by our well-trained generator can treat the forensic detector effectively. Moreover, we show that the perceptual quality of the generated AMR audio is well preserved.

2021 ◽  
Vol 13 (19) ◽  
pp. 3971
Author(s):  
Wenxiang Chen ◽  
Yingna Li ◽  
Zhengang Zhao

Insulator detection is one of the most significant issues in high-voltage transmission line inspection using unmanned aerial vehicles (UAVs) and has attracted attention from researchers all over the world. The state-of-the-art models in object detection perform well in insulator detection, but the precision is limited by the scale of the dataset and parameters. Recently, the Generative Adversarial Network (GAN) was found to offer excellent image generation. Therefore, we propose a novel model called InsulatorGAN based on using conditional GANs to detect insulators in transmission lines. However, due to the fixed categories in datasets such as ImageNet and Pascal VOC, the generated insulator images are of a low resolution and are not sufficiently realistic. To solve these problems, we established an insulator dataset called InsuGenSet for model training. InsulatorGAN can generate high-resolution, realistic-looking insulator-detection images that can be used for data expansion. Moreover, InsulatorGAN can be easily adapted to other power equipment inspection tasks and scenarios using one generator and multiple discriminators. To give the generated images richer details, we also introduced a penalty mechanism based on a Monte Carlo search in InsulatorGAN. In addition, we proposed a multi-scale discriminator structure based on a multi-task learning mechanism to improve the quality of the generated images. Finally, experiments on the InsuGenSet and CPLID datasets demonstrated that our model outperforms existing state-of-the-art models by advancing both the resolution and quality of the generated images as well as the position of the detection box in the images.


Author(s):  
Zhong Qian ◽  
Peifeng Li ◽  
Yue Zhang ◽  
Guodong Zhou ◽  
Qiaoming Zhu

Event factuality identification is an important semantic task in NLP. Traditional research heavily relies on annotated texts. This paper proposes a two-step framework, first extracting essential factors related with event factuality from raw texts as the input, and then identifying the factuality of events via a Generative Adversarial Network with Auxiliary Classification (AC-GAN). The use of AC-GAN allows the model to learn more syntactic information and address the imbalance among factuality values. Experimental results on FactBank show that our method significantly outperforms several state-of-the-art baselines, particularly on events with embedded sources, speculative and negative factuality values.


Author(s):  
Kaizheng Chen ◽  
◽  
Yaping Dai ◽  
Zhiyang Jia ◽  
Kaoru Hirota

In this paper, Spinning Detail Perceptual Generative Adversarial Networks (SDP-GAN) is proposed for single image de-raining. The proposed method adopts the Generative Adversarial Network (GAN) framework and consists of two following networks: the rain streaks generative network G and the discriminative network D. To reduce the background interference, we propose a rain streaks generative network which not only focuses on the high frequency detail map of rainy image, but also directly reduces the mapping range from input to output. To further improve the perceptual quality of generated images, we modify the perceptual loss by extracting high-level features from discriminative network D, rather than pre-trained networks. Furthermore, we introduce a new training procedure based on the notion of self spinning to improve the final de-raining performance. Extensive experiments on the synthetic and real-world datasets demonstrate that the proposed method achieves significant improvements over the recent state-of-the-art methods.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Mingjie Li ◽  
Zichi Wang ◽  
Haoxian Song ◽  
Yong Liu

The deep learning based image steganalysis is becoming a serious threat to modification-based image steganography in recent years. Generation-based steganography directly produces stego images with secret data and can resist the advanced steganalysis algorithms. This paper proposes a novel generation-based steganography method by disguising the stego images into the kinds of images processed by normal operations (e.g., histogram equalization and sharpening). Firstly, an image processing model is trained using DCGAN and WGAN-GP, which is used to generate the images processed by normal operations. Then, the noise mapped by secret data is inputted into the trained model, and the obtained stego image is indistinguishable from the processed image. In this way, the steganographic process can be covered by the process of image processing, leaving little embedding trace in the process of steganography. As a result, the security of steganography is guaranteed. Experimental results show that the proposed scheme has better security performance than the existing steganographic methods when checked by state-of-the-art steganalytic tools, and the superiority and applicability of the proposed work are shown.


Author(s):  
Guang-Yuan Hao ◽  
Hong-Xing Yu ◽  
Wei-Shi Zheng

In this work, we present an interesting attempt on mixture generation: absorbing different image concepts (e.g., content and style) from different domains and thus generating a new domain with learned concepts. In particular, we propose a mixture generative adversarial network (MIXGAN). MIXGAN learns concepts of content and style from two domains respectively, and thus can join them for mixture generation in a new domain, i.e., generating images with content from one domain and style from another. MIXGAN overcomes the limitation of current GAN-based models which either generate new images in the same domain as they observed in training stage, or require off-the-shelf content templates for transferring or translation. Extensive experimental results demonstrate the effectiveness of MIXGAN as compared to related state-of-the-art GAN-based models.


Author(s):  
Wenchao Du ◽  
Hu Chen ◽  
Hongyu Yang ◽  
Yi Zhang

AbstractGenerative adversarial network (GAN) has been applied for low-dose CT images to predict normal-dose CT images. However, the undesired artifacts and details bring uncertainty to the clinical diagnosis. In order to improve the visual quality while suppressing the noise, in this paper, we mainly studied the two key components of deep learning based low-dose CT (LDCT) restoration models—network architecture and adversarial loss, and proposed a disentangled noise suppression method based on GAN (DNSGAN) for LDCT. Specifically, a generator network, which contains the noise suppression and structure recovery modules, is proposed. Furthermore, a multi-scaled relativistic adversarial loss is introduced to preserve the finer structures of generated images. Experiments on simulated and real LDCT datasets show that the proposed method can effectively remove noise while recovering finer details and provide better visual perception than other state-of-the-art methods.


Optik ◽  
2021 ◽  
Vol 227 ◽  
pp. 166060
Author(s):  
Yangdi Hu ◽  
Zhengdong Cheng ◽  
Xiaochun Fan ◽  
Zhenyu Liang ◽  
Xiang Zhai

Proceedings ◽  
2021 ◽  
Vol 77 (1) ◽  
pp. 17
Author(s):  
Andrea Giussani

In the last decade, advances in statistical modeling and computer science have boosted the production of machine-produced contents in different fields: from language to image generation, the quality of the generated outputs is remarkably high, sometimes better than those produced by a human being. Modern technological advances such as OpenAI’s GPT-2 (and recently GPT-3) permit automated systems to dramatically alter reality with synthetic outputs so that humans are not able to distinguish the real copy from its counteracts. An example is given by an article entirely written by GPT-2, but many other examples exist. In the field of computer vision, Nvidia’s Generative Adversarial Network, commonly known as StyleGAN (Karras et al. 2018), has become the de facto reference point for the production of a huge amount of fake human face portraits; additionally, recent algorithms were developed to create both musical scores and mathematical formulas. This presentation aims to stimulate participants on the state-of-the-art results in this field: we will cover both GANs and language modeling with recent applications. The novelty here is that we apply a transformer-based machine learning technique, namely RoBerta (Liu et al. 2019), to the detection of human-produced versus machine-produced text concerning fake news detection. RoBerta is a recent algorithm that is based on the well-known Bidirectional Encoder Representations from Transformers algorithm, known as BERT (Devlin et al. 2018); this is a bi-directional transformer used for natural language processing developed by Google and pre-trained over a huge amount of unlabeled textual data to learn embeddings. We will then use these representations as an input of our classifier to detect real vs. machine-produced text. The application is demonstrated in the presentation.


2019 ◽  
Vol 9 (13) ◽  
pp. 2684 ◽  
Author(s):  
Hongyang Li ◽  
Lizhuang Liu ◽  
Zhenqi Han ◽  
Dan Zhao

Peeling fibre is an indispensable process in the production of preserved Szechuan pickle, the accuracy of which can significantly influence the quality of the products, and thus the contour method of fibre detection, as a core algorithm of the automatic peeling device, is studied. The fibre contour is a kind of non-salient contour, characterized by big intra-class differences and small inter-class differences, meaning that the feature of the contour is not discriminative. The method called dilated-holistically-nested edge detection (Dilated-HED) is proposed to detect the fibre contour, which is built based on the HED network and dilated convolution. The experimental results for our dataset show that the Pixel Accuracy (PA) is 99.52% and the Mean Intersection over Union (MIoU) is 49.99%, achieving state-of-the-art performance.


Author(s):  
Khaled ELKarazle ◽  
Valliappan Raman ◽  
Patrick Then

Age estimation models can be employed in many applications, including soft biometrics, content access control, targeted advertising, and many more. However, as some facial images are taken in unrestrained conditions, the quality relegates, which results in the loss of several essential ageing features. This study investigates how introducing a new layer of data processing based on a super-resolution generative adversarial network (SRGAN) model can influence the accuracy of age estimation by enhancing the quality of both the training and testing samples. Additionally, we introduce a novel convolutional neural network (CNN) classifier to distinguish between several age classes. We train one of our classifiers on a reconstructed version of the original dataset and compare its performance with an identical classifier trained on the original version of the same dataset. Our findings reveal that the classifier which trains on the reconstructed dataset produces better classification accuracy, opening the door for more research into building data-centric machine learning systems.


Sign in / Sign up

Export Citation Format

Share Document