scholarly journals Impact Properties of Recycled Aggregate Concrete with Nanosilica Modification

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Xingguo Wang ◽  
Fei Cheng ◽  
Yixin Wang ◽  
Xianggang Zhang ◽  
Haicheng Niu

The optimal soaking time and nanosilica concentration were chosen by the physical properties of the nanosilica-modified recycled aggregate. Recycled aggregate concrete (RAC) and nanosilica recycled aggregate concrete (SRAC) were fabricated by using ordinary recycled aggregate and nanosilica-modified recycled aggregate. Based on the comparative experimental study of basic mechanical properties, the effects of nanosilica recycled aggregate(SRA) modification and recycled aggregate(RA) replacement percentage on the basic mechanical properties of recycled concrete were analyzed. Finally, the split-Hopkinson pressure bar (SHPB) was used to conduct comparative experimental research on the impact resistance of recycled aggregate concrete and nanosilica-modified recycled aggregate concrete. The effects of nanosilica recycled aggregate modification and aggregate replacement percentage on failure morphology, dynamic peak stress, dynamic increase factor (DIF), dynamic peak strain were analyzed.

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2323
Author(s):  
Yubing Du ◽  
Zhiqing Zhao ◽  
Qiang Xiao ◽  
Feiting Shi ◽  
Jianming Yang ◽  
...  

To explore the basic mechanical properties and size effects of recycled aggregate concrete (RAC) with different substitution ratios of coarse recycled concrete aggregates (CRCAs) to replace natural coarse aggregates (NCA), the failure modes and mechanical parameters of RAC under different loading conditions including compression, splitting tensile resistance and direct shear were compared and analyzed. The conclusions drawn are as follows: the failure mechanisms of concrete with different substitution ratios of CRCAs are similar; with the increase in substitution ratio, the peak compressive stress and peak tensile stress of RAC decrease gradually, the splitting limit displacement decreases, and the splitting tensile modulus slightly increases; with the increase in the concrete cube’s side length, the peak compressive stress of RAC declines gradually, but the integrity after compression is gradually improved; and the increase in the substitution ratio of the recycled aggregate reduces the impact of the size effect on the peak compressive stress of RAC. Furthermore, an influence equation of the coupling effect of the substitution ratio and size effect on the peak compressive stress of RAC was quantitatively established. The research results are of great significance for the engineering application of RAC and the strength selection of RAC structure design.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Yubin Lu ◽  
Xing Chen ◽  
Xiao Teng ◽  
Shu Zhang

This paper presents the experimental results of recycled aggregate concrete (RAC) specimens prepared with five different amounts of recycled coarse aggregate (RCA) (i.e., 0, 25%, 50%, 75%, and 100%) subjected to impact loading based on split Hopkinson pressure bar tests. Strain-rate effects on dynamic compressive strength and critical strain of RAC were studied. Results show that the impact properties of RAC exhibit strong strain-rate dependency and increase approximately linearly with strain-rate. The transition point from low strain-rate sensitivity to high sensitivity decreases with the increase of matrix strength.


2013 ◽  
Vol 438-439 ◽  
pp. 749-755 ◽  
Author(s):  
Tong Hao ◽  
Dong Li

By the experimental studying on the basic mechanical properties of recycled concrete hollow block masonry, the compressive and shear behavior of recycled aggregate concrete hollow block masonry under different mortar strength were analyzed. Research indicated that the compressive and shear behavior of recycled aggregate concrete hollow block masonry was similar to that of ordinary concrete hollow block masonry. The normal formula was recommended to calculate the compressive strength of the masonry. The shear strength of the masonry was affected by the mortar strength. The shear strength calculation formula of recycled concrete hollow block masonry was proposed according to the formula of masonry design code. The calculating results were in good agreement with the test results.


2013 ◽  
Vol 671-674 ◽  
pp. 1736-1740
Author(s):  
Xue Yong Zhao ◽  
Mei Ling Duan

The complete stress-strain curves of recycled aggregate concrete with different recycled coarse aggregate replacement percentages were tested and investigated. An analysis was made of the influence of varying recycled coarse aggregate contents on the complete stress-strain curve, peak stress, peak strain and elastic modulus etc. The elastic modulus of RC is lower than natural concrete (NC), and with the recycled coarse aggregate contents increase, it reduces. While with the increase of water-cement ratio (W/C), recycled concrete compressive strength and elastic modulus improve significantly. In addition, put forward a new equation on the relationship between Ec and fcu of the RC.


2019 ◽  
Vol 17 (06) ◽  
pp. 1950013 ◽  
Author(s):  
Liping Ying ◽  
Yijiang Peng ◽  
Hongming Yang

In this paper, the base force element method (BFEM) for dynamic damage problems is proposed. And the BFEM model was applied to investigate the dynamic mechanical behavior of recycled aggregate concrete (RAC). Any convex polygon recycled aggregate was simulated. A constitutive relationship of dynamic damage was given. The compression test under dynamic loadings on the recycled concrete specimen was simulated. The stress–strain softening curve, variation law of dynamic enhancement coefficient and the damage pattern were researched under different strain rates. The dynamic properties of recycled concrete materials at high strain rate are also studied. The effect of different aggregate distribution on the mechanical properties of concrete was studied. The results of dynamic calculation of recycled concrete materials by this method are compared with the experimental results. The numerical simulation results are in good agreement with the experimental results. The comparative analysis on the dynamic mechanical properties of RAC and natural aggregate concrete (NAC) was also studied. The results show that the BFEM can be used to analyze the dynamic mechanical properties of RAC and NAC under high strain rate, and can be used for large-scale engineering calculations.


2017 ◽  
Vol 11 (1) ◽  
pp. 43-53 ◽  
Author(s):  
Huaxin Liu ◽  
Jianwei Yang ◽  
Xiangqing Kong ◽  
Xuxu Xue

In order to study the basic mechanical properties of basalt fiber reinforced recycled aggregate concrete, the concrete mix ratio, the length and the volume mixing ratio of chopped basalt fiber yarn are designed for changing factors. A total of 324 specimens have been completed for this investigation. The compressive strength, splitting tensile strength, elastic modulus and axial compressive strength of basalt fiber recycled concrete have carried on the experimental study and theoretical analysis as 81 specimens, respectively. In all specimens, coarse aggregate were replaced by recycled aggregate with a replacement rate of 100%. Experimental results show that the failure process and failure pattern of basalt fiber recycled concrete and ordinary concrete are similar; With the improvement of concrete strength grade; When the volume mixing ratio of chopped basalt fiber yarn is 0.2%, the mechanic performance can effectively improve, and the length of chopped basalt fiber has less effect on the mechanical indexes; The conversion relation between common concrete mechanics index is no longer suitable for basalt fiber recycled concrete, new conversion formulas for basalt fiber recycled concrete between the mechanics index were presented through fitting experimental data.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Gai-Fei Peng ◽  
Yan-Zhu Huang ◽  
Hai-Sheng Wang ◽  
Jiu-Feng Zhang ◽  
Qi-Bing Liu

This paper presents an experimental research on mechanical properties of recycled aggregate concrete (RAC) at low and high water/binder (W/B) ratios. Concrete at two W/B ratios (0.255 and 0.586) was broken into recycled concrete aggregates (RCA). A type of thermal treatment was employed to remove mortar attached to RCA. The RAC at a certain (low or high) W/B ratio was prepared with RCA made from demolished concrete of the same W/B ratio. Tests were conducted on aggregate to measure water absorption and crushing values and on both RAC and natural aggregate concrete (NAC) to measure compressive strength, tensile splitting strength, and fracture energy. The mechanical properties of RAC were lower than those of NAC at an identical mix proportion. Moreover, the heating process caused a decrease in compressive strength and fracture energy in the case of low W/B ratio but caused an increase in those properties in the case of high W/B ratio. The main type of flaw in RCA from concrete at a low W/B ratio should be microcracks in gravel, and the main type of flaw in RCA from concrete at a high W/B ratio should be attached mortar.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Anjun Li ◽  
Gaoqiang Zhou ◽  
Xianggang Zhang ◽  
Ercong Meng

A novel recycled aggregate concrete was prepared by replacing the natural aggregate with recycled lightweight aggregate. Subsequently, the mechanical properties and compressive stress-strain constitutive relation of the recycled lightweight aggregate concrete (RLWAC) were explored. For this purpose, the recycled lightweight aggregate (RLWA) replacement ratio (0%, 25%, 50%, 75%, and 100%) was selected as a variable, and the compressive strength of 15 cube and 30 prism specimens was evaluated. The failure morphology of the specimen was subsequently characterized, along with the cubic compressive strength, axial compressive strength, peak strain, ultimate strain, and other performance indices. The influence of the replacement ratio for the specimen indices of the RLWAC was also analyzed. It was observed that the dry apparent density of RLWAC decreased gradually on increasing the replacement ratio. Compared with 0% replacement ratio, a decrease of 6.50%, 11.39%, 21.84%, and 27.54% was observed, respectively. On enhancing the RLWA replacement ratio, the compressive strength, peak strain, and ultimate strain of RLWAC were observed to be gradually reduced. As the replacement ratio was increased from 75% to 100%, the peak strain was noted to decrease the most by about 6.8%. As the replacement ratio was increased from 50% to 75%, the ultimate strain decreased the most by about 14.2%. Based on the experimental findings, the functional relationships of the strength indices and the conversion value of each strength index with the replacement ratio were also established. Finally, based on the model proposed by the existing model, the stress-strain equation of RLWAC was developed, and the fitting results were observed to be in good agreement with the test results.


2022 ◽  
Vol 2148 (1) ◽  
pp. 012060
Author(s):  
Zhaoyang Ding ◽  
Qun Su ◽  
Hongguan Bian ◽  
Qing Wang ◽  
Jinghai Zhou

Abstract Geopolymer recycled aggregate concrete (GRAC) was prepared by replacing cement with geopolymer and natural aggregate with wast concrete. The effect of water-glass modules on mechanical properties of GRAC was studied. It was found that there are tow kind of binding structures in geopolymer hydration product: C-A-S-H and N-A-S-H, they both contribute to the strength of GRAC. The value of size conversion coefficient of current national standard is inapplicable for GRAC, the calculation method of which is given in this paper. Elasticity modulus and peak stress of GRAC is proportional to water-glass modulus, and peak strain is inversely proportional and its constitutive equation was established.


2021 ◽  
Vol 882 ◽  
pp. 237-246
Author(s):  
Sallehan Ismail ◽  
Mohamad Asri Abd Hamid ◽  
Zaiton Yaacob

This study aims to explore the inclusion of microfibre in fine recycled aggregate (FRA) mortars under dynamic impact load. A 12-mm-diameter Split Hopkinson Pressure Bar (SHPB) was employed to test the impact of a recycled mortar with a single and hybrid fibre system and to determine potential improvements in its dynamic mechanical properties. In recycled mortar production, two microfibres with different sizes and types, namely, polypropylene and nylon, were added whilst keeping the amount of microfibres at a volumetrical fraction of 0.6%. An impact loading test was conducted by using the striking bar of SHPB at impact speeds of 2, 4 and 6 m/s. The effects of fibre on failure mode, tensile curve, compressive strength and dynamic increase factor (DIF) were then analysed. Experimental findings show that the improved mortar fibre mix has superior quasi-static and dynamic compression power compared with the reference mortar mix. Meanwhile, compared with the single fibre mix, the hybrid fibre mix is more effective in enhancing the dynamic compressive ability of the recycled mortar. The recycled-hybrid-fibre-enhanced mortar showed lower DIF values compared with the reference mortar, and the inclusion of fibre reinforcement can reduce the fragmentation of the recycled mortar mix after being subjected to impact.


Sign in / Sign up

Export Citation Format

Share Document