scholarly journals Energy-Aware Scheduling of Workflow Using a Heuristic Method on Green Cloud

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Zhihao Peng ◽  
Behnam Barzegar ◽  
Maryam Yarahmadi ◽  
Homayun Motameni ◽  
Poria Pirouzmand

Energy consumption has been one of the main concerns to support the rapid growth of cloud data centers, as it not only increases the cost of electricity to service providers but also plays an important role in increasing greenhouse gas emissions and thus environmental pollution, and has a negative impact on system reliability and availability. As a result, energy consumption and efficiency metrics have become a vital issue for parallel scheduling applications based on tasks performed at cloud data centers. In this paper, we present a time and energy-aware two-phase scheduling algorithm called best heuristic scheduling (BHS) for directed acyclic graph (DAG) scheduling on cloud data center processors. In the first phase, the algorithm allocates resources to tasks by sorting, based on four heuristic methods and a grasshopper algorithm. It then selects the most appropriate method to perform each task, based on the importance factor determined by the end-user or service provider to achieve a solution designed at the right time. In the second phase, BHS minimizes the makespan and energy consumption according to the importance factor determined by the end-user or service provider and taking into account the start time, setup time, end time, and energy profile of virtual machines. Finally, a test dataset is developed to evaluate the proposed BHS algorithm compared to the multiheuristic resource allocation algorithm (MHRA). The results show that the proposed algorithm facilitates 19.71% more energy storage than the MHRA algorithm. Furthermore, the makespan is reduced by 56.12% in heterogeneous environments.

2018 ◽  
Vol 7 (2.8) ◽  
pp. 550 ◽  
Author(s):  
G Anusha ◽  
P Supraja

Cloud computing is a growing technology now-a-days, which provides various resources to perform complex tasks. These complex tasks can be performed with the help of datacenters. Data centers helps the incoming tasks by providing various resources like CPU, storage, network, bandwidth and memory, which has resulted in the increase of the total number of datacenters in the world. These data centers consume large volume of energy for performing the operations and which leads to high operation costs. Resources are the key cause for the power consumption in data centers along with the air and cooling systems. Energy consumption in data centers is comparative to the resource usage. Excessive amount of energy consumption by datacenters falls out in large power bills. There is a necessity to increase the energy efficiency of such data centers. We have proposed an Energy aware dynamic virtual machine consolidation (EADVMC) model which focuses on pm selection, vm selection, vm placement phases, which results in the reduced energy consumption and the Quality of service (QoS) to a considerable level.


2019 ◽  
Vol 2019 ◽  
pp. 1-16
Author(s):  
Chi Zhang ◽  
Yuxin Wang ◽  
Yuanchen Lv ◽  
Hao Wu ◽  
He Guo

Reducing energy consumption of data centers is an important way for cloud providers to improve their investment yield, but they must also ensure that the services delivered meet the various requirements of consumers. In this paper, we propose a resource management strategy to reduce both energy consumption and Service Level Agreement (SLA) violations in cloud data centers. It contains three improved methods for subproblems in dynamic virtual machine (VM) consolidation. For making hosts detection more effective and improving the VM selection results, first, the overloaded hosts detecting method sets a dynamic independent saturation threshold for each host, respectively, which takes the CPU utilization trend into consideration; second, the underutilized hosts detecting method uses multiple factors besides CPU utilization and the Naive Bayesian classifier to calculate the combined weights of hosts in prioritization step; and third, the VM selection method considers both current CPU usage and future growth space of CPU demand of VMs. To evaluate the performance of the proposed strategy, it is simulated in CloudSim and compared with five existing energy–saving strategies using real-world workload traces. The experimental results show that our strategy outperforms others with minimum energy consumption and SLA violation.


Sign in / Sign up

Export Citation Format

Share Document