scholarly journals Entanglement Quantification of Correlated Photons Generated by Three-Level Laser with Parametric Amplifier and Coupled to a Two-Mode Vacuum Reservoir

2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Chimdessa Gashu ◽  
Ebisa Mosisa ◽  
Tamirat Abebe

In this paper, the detailed inseparability criteria of entanglement quantification of correlated two-mode light generated by a three-level laser with a coherently driven parametric amplifier and coupled to a two-mode vacuum reservoir is thoroughly analyzed. Using the master equation, we obtain the stochastic differential equation and the correlation properties of the noise forces associated with the normal ordering. Next, we study the squeezing and the photon entanglement by considering different inseparability criteria. The various criteria of entanglement used in this paper show that the light generated by the quantum optical system is entangled and the amount of entanglement is amplified by introducing the parametric amplifier into the laser cavity and manipulating the linear gain coefficient.

2021 ◽  
pp. 1-8
Author(s):  
Ebisa Mosisa Kanea ◽  

In this paper, quantum entanglement of correlated two-mode light generated by a three-level laser coupled to a two-mode squeezed vacuum reservoir is thoroughly analyzed using different inseparability criteria, using the master equation, we obtain the stochastic dierential equation and the correlation properties of the noise forces associated with the normal ordering. Next, we study the photon entanglement by considering different inseparability criteria. In particular, the criteria applied are Duan-Giedke-Cirac-Zoller (DGCZ) criterion, logarithmic negativity, Hillery-Zubairy, and Cauchy-Schwartz inequality and we found that the presence of the squeezing parameter leads to an increase in the degree of entanglement. Moreover, the linear gain coecient significantly achieved the degree of entanglement for the cavity radiation


2021 ◽  
Vol 66 (3) ◽  
pp. 185
Author(s):  
T. Abebe ◽  
Ch. Gashu ◽  
E. Mosisa

The detailed analysis of the two-mode quadrature squeezing and statistical properties of light generated by a nondegenerate three-level laser which has a parametric amplifier and coupled with a thermal reservoir is executed. The combination of the master equation and the stochastic differential equation is presented to study the nonclassical features of the light generated by the quantum system. Moreover, with the aid the resulting solutions together with the correlation properties of noise operators, we calculated the quadrature squeezing, entanglement, and mean number of photon pairs of the cavity light. It is found that the external small-amplitude driving radiation induces a strong correlation between the top and bottom states of three-level atoms to produce a high degree of squeezing. Moreover, the presence of a parametric amplifier is found to enhance the degree of squeezing of the cavity light. We have also established that an increase in the mean thermal photon number appears to degrade the squeezing, but enhances the mean number of photon pairs of the cavity light.


2003 ◽  
Vol 10 (2) ◽  
pp. 381-399
Author(s):  
A. Yu. Veretennikov

Abstract We establish sufficient conditions under which the rate function for the Euler approximation scheme for a solution of a one-dimensional stochastic differential equation on the torus is close to that for an exact solution of this equation.


1990 ◽  
Vol 41 (11) ◽  
pp. 6567-6570 ◽  
Author(s):  
G. J. Milburn

Sign in / Sign up

Export Citation Format

Share Document