scholarly journals Moving Load Spectrum for Analyzing the Extreme Response of Bridge Free Vibration

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Jinhua Li ◽  
Huantao Zhang

In order to more effectively establish the relationship between moving load speed and the extreme response of bridge free vibration, a novel analysis method is presented based on the moving load spectrum, which is deduced from Fourier transform in this paper. By analyzing the moving load spectrum in detail, the moving load velocities which lead to the extreme responses of bridge free vibration under single moving constant force or harmonic force are obtained, and the corresponding formula for calculating the moving load velocity which leads to the maximum response of bridge free vibration is put forward. Finally, the moving load spectrum for analyzing the extreme response of bridge free vibration is validated by a large number of calculations in the time domain in this paper. The results show that the moving velocities corresponding to the extreme points in the moving load spectrum are consistent with the velocities corresponding to the extreme points of the bridge vibration response obtained in the time domain, and the forced and free vibration displacement responses of bridge are not the largest when the single moving constant force or harmonic force passes through the bridge at the resonant velocity compared to other speeds.

Author(s):  
M Faraji Oskouie ◽  
R Ansari ◽  
H Rouhi

On the basis of fractional viscoelasticity, the size-dependent free-vibration response of viscoelastic carbon nanotubes conveying fluid and resting on viscoelastic foundation is studied in this article. To this end, a nonlocal Timoshenko beam model is developed in the context of fractional calculus. Hamilton’s principle is applied in order to obtain the fractional governing equations including nanoscale effects. The Kelvin–Voigt viscoelastic model is also used for the constitutive equations. The free-vibration problem is solved using two methods. In the first method, which is limited to the simply supported boundary conditions, the Galerkin technique is employed for discretizing the spatial variables and reducing the governing equations to a set of ordinary differential equations on the time domain. Then, the Duffing-type time-dependent equations including fractional derivatives are solved via fractional integrator transfer functions. In the second method, which can be utilized for carbon nanotubes with different types of boundary conditions, the generalized differential quadrature technique is used for discretizing the governing equations on spatial grids, whereas the finite difference technique is used on the time domain. In the results, the influences of nonlocality, geometrical parameters, fractional derivative orders, viscoelastic foundation, and fluid flow velocity on the time responses of carbon nanotubes are analyzed.


Author(s):  
Zongkai Liu ◽  
Chuan Peng ◽  
Xiaoqiang Yang

The measured uniaxial-head load spectrum in the road simulation test has a large number of useless small loads. When applying the measured load spectrum directly, it will take a lot of time. This paper designs a comprehensive road spectrum measurement system to collect data and proposes a method for editing the uniaxial-head acceleration load spectrum using short-time Fourier transform to speed up the reliability test process and reduce time costs. In this method, the time domain and frequency domain information of the signal is obtained by short-time Fourier transform. The concept of accumulated power spectral density is proposed to identify the reduced load data, and the relative fatigue damage is used as the pass criterion. The length of the edited spectrum is only 66% of the original spectrum through the above-mentioned editing method and retains the relative damage amount of 91%. Finally, through the analysis of time domain, frequency domain, and fatigue statistical parameters, it demonstrates that the short-time Fourier transform–based acceleration load spectrum edition method could achieve a similar fatigue damage to the original spectrum in a shorter time.


Author(s):  
Michael Feldman ◽  
Simon Braun

Abstract A method for dynamic analysis of sophisticated nonlinear single-degree-of-freedom systems, based on the Hilbert transform in the time domain is described. Using the Hilbert transform together with the proposed method for system identification, we obtain both instantaneous modal parameters together with non-linear force characteristics during free vibration analysis under impulse excitation without long resonance testing. Using the Hilbert transform in the time domain is a new method of studying linear and non-linear vibrating systems exposed to impulse or shock inputs.


2020 ◽  
Vol 63 ◽  
pp. 112-133 ◽  
Author(s):  
Farshad Khosravi ◽  
Seyyed Amirhosein Hosseini ◽  
Abdelouahed Tounsi

The dynamic free and forced axial vibrations subjected to moving exponential and harmonic axial forces of a single-walled carbon nanotube (SWCNT) embedded in an elastic medium, are studied in this paper. Two different boundary conditions of SWCNT, including clamped-clamped and clamped-free, are taken into account. Eringen’s nonlocal elasticity theory is used to show the nonlocality for the model. The constitutive equations and their boundary conditions are derived by Hamilton’s principle. Employing the general solution, the derived equations are analytically solved to obtain two items. Firstly, the axial natural frequencies, secondly, the time-domain axial displacements at the middle of the carbon nanotube (CNT), and then the maximum axial displacements. The responses are validated with previous works, and the results demonstrates good agreement to them to verify the influence of the nonlocal parameter on the nondimensional natural frequencies for three various mode numbers. In the time-domain section, the effects of the nonlocal parameter, length, nondimensional stiffness of the elastic medium, and velocity of the moving load on the axial displacement are investigated. Also, the influences of the excitation frequency to natural frequency for the harmonic moving load, as well as the time constant for the exponential moving load on the axial displacement, are illustrated. Finally, the effect of the nonlocal parameter on the maximum axial deflection versus velocity parameter is schematically indicated.


1992 ◽  
Vol 2 (4) ◽  
pp. 615-620
Author(s):  
G. W. Series
Keyword(s):  

2018 ◽  
Vol 12 (7-8) ◽  
pp. 76-83
Author(s):  
E. V. KARSHAKOV ◽  
J. MOILANEN

Тhe advantage of combine processing of frequency domain and time domain data provided by the EQUATOR system is discussed. The heliborne complex has a towed transmitter, and, raised above it on the same cable a towed receiver. The excitation signal contains both pulsed and harmonic components. In fact, there are two independent transmitters operate in the system: one of them is a normal pulsed domain transmitter, with a half-sinusoidal pulse and a small "cut" on the falling edge, and the other one is a classical frequency domain transmitter at several specially selected frequencies. The received signal is first processed to a direct Fourier transform with high Q-factor detection at all significant frequencies. After that, in the spectral region, operations of converting the spectra of two sounding signals to a single spectrum of an ideal transmitter are performed. Than we do an inverse Fourier transform and return to the time domain. The detection of spectral components is done at a frequency band of several Hz, the receiver has the ability to perfectly suppress all sorts of extra-band noise. The detection bandwidth is several dozen times less the frequency interval between the harmonics, it turns out thatto achieve the same measurement quality of ground response without using out-of-band suppression you need several dozen times higher moment of airborne transmitting system. The data obtained from the model of a homogeneous half-space, a two-layered model, and a model of a horizontally layered medium is considered. A time-domain data makes it easier to detect a conductor in a relative insulator at greater depths. The data in the frequency domain gives more detailed information about subsurface. These conclusions are illustrated by the example of processing the survey data of the Republic of Rwanda in 2017. The simultaneous inversion of data in frequency domain and time domain can significantly improve the quality of interpretation.


2019 ◽  
Vol 629 ◽  
pp. A112 ◽  
Author(s):  
B. M. Giuliano ◽  
A. A. Gavdush ◽  
B. Müller ◽  
K. I. Zaytsev ◽  
T. Grassi ◽  
...  

Context. Reliable, directly measured optical properties of astrophysical ice analogues in the infrared and terahertz (THz) range are missing from the literature. These parameters are of great importance to model the dust continuum radiative transfer in dense and cold regions, where thick ice mantles are present, and are necessary for the interpretation of future observations planned in the far-infrared region. Aims. Coherent THz radiation allows for direct measurement of the complex dielectric function (refractive index) of astrophysically relevant ice species in the THz range. Methods. We recorded the time-domain waveforms and the frequency-domain spectra of reference samples of CO ice, deposited at a temperature of 28.5 K and annealed to 33 K at different thicknesses. We developed a new algorithm to reconstruct the real and imaginary parts of the refractive index from the time-domain THz data. Results. The complex refractive index in the wavelength range 1 mm–150 μm (0.3–2.0 THz) was determined for the studied ice samples, and this index was compared with available data found in the literature. Conclusions. The developed algorithm of reconstructing the real and imaginary parts of the refractive index from the time-domain THz data enables us, for the first time, to determine the optical properties of astrophysical ice analogues without using the Kramers–Kronig relations. The obtained data provide a benchmark to interpret the observational data from current ground-based facilities as well as future space telescope missions, and we used these data to estimate the opacities of the dust grains in presence of CO ice mantles.


2009 ◽  
Vol 6 (7) ◽  
pp. 577-580
Author(s):  
N. H. Adamyan ◽  
H. H. Adamyan ◽  
G. Yu. Kryuchkyan

Sign in / Sign up

Export Citation Format

Share Document